Single Variable Calculus: Concepts and Contexts, Enhanced Edition
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
4th Edition
ISBN: 9781337687805
Author: James Stewart
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4.6, Problem 37E
To determine

To calculate: The least illumination of an object by a light source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source. If two light sources, one three as strong as the other, are placed 10ft apart, where should an object be placed on the line between the sources.

Expert Solution & Answer
Check Mark

Answer to Problem 37E

the object should be placed about 5.9ft from the larger light source

Explanation of Solution

Given information:

The illumination of an object by a light source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source. If two light sources, one three as strong as the other, are placed 10ft apart, where should an object be placed on the line between the sources

Formula used:

Let f be a differentiable function defined on an interval I and let aI .

Then

  1. x=a is a point of local maximum value of f, if
    1. f(a)=0 and
    2. f(x) changes sign from positive to negative as x increases through a , i.e. if f(x)>0 at every point sufficiently close to and to the left of a , and f(x)<0 at every point sufficiently close to and to the right of a , then a is a point of local maxima
  2. x=a is a point of local maximum value of f, if
    1. f(a)=0 and
    2. f(x) changessign from negative to positive as x increases through a , i.e. if f(x)<0 at every point sufficiently close to and to the left of a , and at f(x)>0 every point sufficiently close to and to the right of a , then a is a point of local minima.
  3. f(a)=0 and If f(x) does not change sign as x increases through a , then a is neither a point of local maxima nor a point of local minima.
  • If f(a)>0 then f has a local minimum at x=a
  • If f(a)<0 then f has a local maximum at x=a

Calculation:

As per the given problem

Draw the diagram of the illumination of an object by a light source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source. If two light sources, one three as strong as the other, are placed 10ft apart, where should an object be placed on the line between the sources

  Single Variable Calculus: Concepts and Contexts, Enhanced Edition, Chapter 4.6, Problem 37E

Let the object is placed xft from the bigger source then the object 10xft from the smaller source

Let the strength of the source be k

Hence, the strength of the bigger source is 3k

Since illumination is directly proportional to the square of the strength and inversely proportional to the distance from the source,

The illumination from the bigger source is =3kx2

The illumination from the smaller source is =k(10x)2

Hence, the total illumination is

  I(x)=6kx3+2k(10x)3

Recall that,

Let f be a differentiable function defined on an interval I and let aI .

Then

  1. x=a is a point of local maximum value of f, if
    1. f(a)=0 and
    2. f(x) changes sign from positive to negative as x increases through a , i.e. if f(x)>0 at every point sufficiently close to and to the left of a , and f(x)<0 at every point sufficiently close to and to the right of a , then a is a point of local maxima
  2. x=a is a point of local maximum value of f, if
  3. f(a)=0 and
    1. f(x) changes sign from negative to positive as x increases through a , i.e. if f(x)<0 at every point sufficiently close to and to the left of a , and at every point sufficiently close to and to the right of a , then a is a point of local minima.
  4. f(a)=0 and If f(x) does not change sign as x increases through a , then a is neither a point of local maxima nor a point of local minima.
  • If f(a)>0 then f has a local minimum at x=a
  • If f(a)<0 then f has a local maximum at x=a

Differentiate on both sides,

  I(x)=6kx3+2k(10x)3......(1)

Solve for I(x)=0 , and simplified

  6kx3+2k(10x)3=02k(10x)3=6kx31(10x)3=3x33(10x)3=x3

Take cube root on both sides,

  33(10x)=x33×1033x=xx+33x=33×10x(1+33)=33×10x=33×10(1+33)5.9ft

Differentiate equation (1) with respect to x

  I(x)=18kx4+2k(10x)4

Therefore,

  I(x)=18kx4+2k(10x)40 provided k>0

For x=5.9ft is minimum for I

Conclusion:

Thus the object should be placed about 5.9ft from the larger light source.

Chapter 4 Solutions

Single Variable Calculus: Concepts and Contexts, Enhanced Edition

Ch. 4.1 - Prob. 11ECh. 4.1 - Prob. 12ECh. 4.1 - Prob. 13ECh. 4.1 - Prob. 14ECh. 4.1 - Prob. 15ECh. 4.1 - Prob. 16ECh. 4.1 - Prob. 17ECh. 4.1 - Prob. 18ECh. 4.1 - Prob. 19ECh. 4.1 - Prob. 20ECh. 4.1 - Prob. 21ECh. 4.1 - Prob. 22ECh. 4.1 - Prob. 23ECh. 4.1 - Prob. 24ECh. 4.1 - Prob. 25ECh. 4.1 - Prob. 26ECh. 4.1 - Prob. 27ECh. 4.1 - Prob. 28ECh. 4.1 - Prob. 29ECh. 4.1 - Prob. 30ECh. 4.1 - Prob. 31ECh. 4.1 - Prob. 32ECh. 4.1 - Prob. 33ECh. 4.1 - Prob. 34ECh. 4.1 - Prob. 35ECh. 4.1 - Prob. 36ECh. 4.1 - Prob. 37ECh. 4.1 - Prob. 38ECh. 4.1 - Prob. 39ECh. 4.1 - Prob. 40ECh. 4.1 - Prob. 41ECh. 4.1 - Prob. 42ECh. 4.1 - Prob. 43ECh. 4.1 - Prob. 44ECh. 4.2 - Explain the difference between an absolute minimum...Ch. 4.2 - Prob. 2ECh. 4.2 - Prob. 3ECh. 4.2 - For each of the numbers a, b, c, d, r, and s,...Ch. 4.2 - Prob. 5ECh. 4.2 - Use the graph to state the absolute and local...Ch. 4.2 - Prob. 7ECh. 4.2 - Prob. 8ECh. 4.2 - Prob. 9ECh. 4.2 - Prob. 10ECh. 4.2 - (a) Sketch the graph of a function that has a...Ch. 4.2 - Prob. 12ECh. 4.2 - (a) Sketch the graph of a function on [1, 2] that...Ch. 4.2 - Prob. 14ECh. 4.2 - Prob. 15ECh. 4.2 - Prob. 16ECh. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.2 - Prob. 20ECh. 4.2 - Prob. 21ECh. 4.2 - Prob. 22ECh. 4.2 - Prob. 23ECh. 4.2 - Find the critical numbers of the function. f(x) =...Ch. 4.2 - Find the critical numbers of the function. f(x) =...Ch. 4.2 - Prob. 26ECh. 4.2 - Find the critical numbers of the function. g(t) =...Ch. 4.2 - Prob. 28ECh. 4.2 - Find the critical numbers of the function....Ch. 4.2 - Prob. 30ECh. 4.2 - Prob. 31ECh. 4.2 - Prob. 32ECh. 4.2 - Prob. 33ECh. 4.2 - Find the critical numbers of the function. g() = 4...Ch. 4.2 - Find the critical numbers of the function. f() = 2...Ch. 4.2 - Find the critical numbers of the function. h(t) =...Ch. 4.2 - Find the critical numbers of the function. f(x) =...Ch. 4.2 - Prob. 38ECh. 4.2 - Prob. 39ECh. 4.2 - A formula for the derivative of a function f is...Ch. 4.2 - Prob. 41ECh. 4.2 - Prob. 42ECh. 4.2 - Prob. 43ECh. 4.2 - Prob. 44ECh. 4.2 - Prob. 45ECh. 4.2 - Prob. 46ECh. 4.2 - Prob. 47ECh. 4.2 - Prob. 48ECh. 4.2 - Prob. 49ECh. 4.2 - Prob. 50ECh. 4.2 - Prob. 51ECh. 4.2 - Prob. 52ECh. 4.2 - Prob. 53ECh. 4.2 - Prob. 54ECh. 4.2 - Prob. 55ECh. 4.2 - Prob. 56ECh. 4.2 - Prob. 57ECh. 4.2 - Prob. 58ECh. 4.2 - Prob. 59ECh. 4.2 - Prob. 60ECh. 4.2 - Prob. 61ECh. 4.2 - Prob. 62ECh. 4.2 - Prob. 63ECh. 4.2 - Prob. 64ECh. 4.2 - Prob. 65ECh. 4.2 - Prob. 66ECh. 4.3 - Prob. 1ECh. 4.3 - Prob. 2ECh. 4.3 - Prob. 3ECh. 4.3 - Prob. 4ECh. 4.3 - Prob. 5ECh. 4.3 - Prob. 6ECh. 4.3 - Prob. 7ECh. 4.3 - Prob. 8ECh. 4.3 - Prob. 9ECh. 4.3 - Prob. 10ECh. 4.3 - Prob. 11ECh. 4.3 - Prob. 12ECh. 4.3 - Prob. 13ECh. 4.3 - Prob. 14ECh. 4.3 - Prob. 15ECh. 4.3 - Prob. 16ECh. 4.3 - Prob. 17ECh. 4.3 - Prob. 18ECh. 4.3 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - Prob. 21ECh. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - Prob. 24ECh. 4.3 - Prob. 25ECh. 4.3 - Prob. 26ECh. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - Prob. 30ECh. 4.3 - Prob. 31ECh. 4.3 - Prob. 32ECh. 4.3 - Prob. 33ECh. 4.3 - Prob. 34ECh. 4.3 - Prob. 35ECh. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.3 - Prob. 38ECh. 4.3 - Prob. 39ECh. 4.3 - Prob. 40ECh. 4.3 - Prob. 41ECh. 4.3 - Prob. 42ECh. 4.3 - Prob. 43ECh. 4.3 - Prob. 44ECh. 4.3 - Prob. 45ECh. 4.3 - Prob. 46ECh. 4.3 - Prob. 47ECh. 4.3 - Prob. 48ECh. 4.3 - Prob. 49ECh. 4.3 - Prob. 50ECh. 4.3 - Prob. 51ECh. 4.3 - Prob. 52ECh. 4.3 - Prob. 53ECh. 4.3 - Prob. 54ECh. 4.3 - Prob. 55ECh. 4.3 - Prob. 56ECh. 4.3 - Prob. 57ECh. 4.3 - Prob. 58ECh. 4.3 - Prob. 59ECh. 4.3 - Prob. 60ECh. 4.3 - Prob. 61ECh. 4.3 - Prob. 62ECh. 4.3 - Prob. 63ECh. 4.3 - Prob. 64ECh. 4.3 - Prob. 65ECh. 4.3 - Prob. 66ECh. 4.3 - Prob. 67ECh. 4.3 - Prob. 68ECh. 4.3 - Prob. 69ECh. 4.3 - Prob. 70ECh. 4.3 - Prob. 71ECh. 4.3 - Prob. 72ECh. 4.4 - Prob. 1ECh. 4.4 - Prob. 2ECh. 4.4 - Prob. 3ECh. 4.4 - Prob. 4ECh. 4.4 - Prob. 5ECh. 4.4 - Prob. 6ECh. 4.4 - Prob. 7ECh. 4.4 - Prob. 8ECh. 4.4 - Prob. 9ECh. 4.4 - Prob. 10ECh. 4.4 - Prob. 11ECh. 4.4 - Prob. 12ECh. 4.4 - Prob. 13ECh. 4.4 - Prob. 14ECh. 4.4 - Prob. 15ECh. 4.4 - Prob. 16ECh. 4.4 - Prob. 17ECh. 4.4 - Prob. 18ECh. 4.4 - Prob. 19ECh. 4.4 - Prob. 20ECh. 4.4 - Prob. 21ECh. 4.4 - Prob. 22ECh. 4.4 - Prob. 23ECh. 4.4 - Prob. 24ECh. 4.4 - Prob. 25ECh. 4.4 - Prob. 26ECh. 4.4 - Prob. 27ECh. 4.4 - Prob. 28ECh. 4.4 - Prob. 29ECh. 4.4 - Prob. 30ECh. 4.4 - Prob. 31ECh. 4.4 - Prob. 32ECh. 4.4 - Prob. 33ECh. 4.4 - Prob. 34ECh. 4.4 - Prob. 35ECh. 4.4 - Prob. 36ECh. 4.5 - Given that...Ch. 4.5 - Given that...Ch. 4.5 - Prob. 3ECh. 4.5 - Given that...Ch. 4.5 - Prob. 5ECh. 4.5 - Prob. 6ECh. 4.5 - Prob. 7ECh. 4.5 - Prob. 8ECh. 4.5 - Prob. 9ECh. 4.5 - Prob. 10ECh. 4.5 - Prob. 11ECh. 4.5 - Prob. 12ECh. 4.5 - Prob. 13ECh. 4.5 - Prob. 14ECh. 4.5 - Prob. 15ECh. 4.5 - Prob. 16ECh. 4.5 - Prob. 17ECh. 4.5 - Prob. 18ECh. 4.5 - Prob. 19ECh. 4.5 - Prob. 20ECh. 4.5 - Prob. 21ECh. 4.5 - Prob. 22ECh. 4.5 - Prob. 23ECh. 4.5 - Prob. 24ECh. 4.5 - Prob. 25ECh. 4.5 - Prob. 26ECh. 4.5 - Prob. 27ECh. 4.5 - Prob. 28ECh. 4.5 - Prob. 29ECh. 4.5 - Prob. 30ECh. 4.5 - Prob. 31ECh. 4.5 - Prob. 32ECh. 4.5 - Prob. 33ECh. 4.5 - Prob. 34ECh. 4.5 - Prob. 35ECh. 4.5 - Prob. 36ECh. 4.5 - Prob. 37ECh. 4.5 - Prob. 38ECh. 4.5 - Prob. 39ECh. 4.5 - Prob. 40ECh. 4.5 - Prob. 41ECh. 4.5 - Prob. 42ECh. 4.5 - Prob. 43ECh. 4.5 - Prob. 44ECh. 4.5 - Prob. 45ECh. 4.5 - Prob. 46ECh. 4.5 - Prob. 47ECh. 4.5 - Prob. 48ECh. 4.5 - Prob. 49ECh. 4.5 - Prob. 50ECh. 4.5 - Prob. 51ECh. 4.5 - Prob. 52ECh. 4.5 - Prob. 53ECh. 4.5 - Prob. 54ECh. 4.5 - Prob. 55ECh. 4.5 - Prob. 56ECh. 4.5 - Prob. 57ECh. 4.5 - Prob. 58ECh. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - Prob. 61ECh. 4.5 - Prob. 62ECh. 4.5 - Prob. 63ECh. 4.5 - Prob. 64ECh. 4.5 - Prob. 65ECh. 4.5 - Prob. 66ECh. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Prob. 69ECh. 4.5 - Prob. 70ECh. 4.5 - Prob. 71ECh. 4.5 - Prob. 72ECh. 4.5 - Prob. 73ECh. 4.5 - Prob. 74ECh. 4.5 - Prob. 75ECh. 4.5 - Prob. 76ECh. 4.6 - Consider the following problem: Find two numbers...Ch. 4.6 - Find two numbers whose difference is 100 and whose...Ch. 4.6 - Find two positive numbers whose product is 100 and...Ch. 4.6 - The sum of two positive numbers is 16. What is the...Ch. 4.6 - Prob. 5ECh. 4.6 - Prob. 6ECh. 4.6 - Prob. 7ECh. 4.6 - The rate (in mg carbon/m3/h) at which...Ch. 4.6 - Consider the following problem: A farmer with 750...Ch. 4.6 - Prob. 10ECh. 4.6 - Prob. 11ECh. 4.6 - Prob. 12ECh. 4.6 - Prob. 13ECh. 4.6 - Prob. 14ECh. 4.6 - Prob. 15ECh. 4.6 - Prob. 16ECh. 4.6 - Prob. 17ECh. 4.6 - Prob. 18ECh. 4.6 - Prob. 19ECh. 4.6 - Prob. 20ECh. 4.6 - Prob. 21ECh. 4.6 - Prob. 22ECh. 4.6 - Prob. 23ECh. 4.6 - Prob. 24ECh. 4.6 - Prob. 25ECh. 4.6 - Prob. 26ECh. 4.6 - Prob. 27ECh. 4.6 - Prob. 28ECh. 4.6 - Prob. 29ECh. 4.6 - Prob. 30ECh. 4.6 - Prob. 31ECh. 4.6 - Prob. 32ECh. 4.6 - Prob. 33ECh. 4.6 - Prob. 34ECh. 4.6 - Prob. 35ECh. 4.6 - Prob. 36ECh. 4.6 - Prob. 37ECh. 4.6 - Prob. 38ECh. 4.6 - Prob. 39ECh. 4.6 - Prob. 40ECh. 4.6 - Prob. 41ECh. 4.6 - Prob. 42ECh. 4.6 - Prob. 43ECh. 4.6 - Prob. 44ECh. 4.6 - Prob. 45ECh. 4.6 - Prob. 46ECh. 4.6 - Prob. 47ECh. 4.6 - Prob. 48ECh. 4.6 - Prob. 49ECh. 4.6 - Prob. 50ECh. 4.6 - Prob. 51ECh. 4.6 - Prob. 52ECh. 4.6 - Prob. 53ECh. 4.6 - Prob. 54ECh. 4.6 - Prob. 55ECh. 4.6 - Prob. 56ECh. 4.6 - Prob. 57ECh. 4.6 - Prob. 58ECh. 4.6 - Prob. 59ECh. 4.6 - Prob. 60ECh. 4.6 - Prob. 61ECh. 4.6 - Prob. 62ECh. 4.7 - The figure shows the graph of a function f....Ch. 4.7 - Follow the instructions for Exercise 1(a) but use...Ch. 4.7 - Suppose the tangent line to the curve y = f(x) at...Ch. 4.7 - For each initial approximation, determine...Ch. 4.7 - Prob. 5ECh. 4.7 - Prob. 6ECh. 4.7 - Prob. 7ECh. 4.7 - Prob. 8ECh. 4.7 - Use Newtons method with initial approximation x1 =...Ch. 4.7 - Use Newtons method with initial approximation x1 =...Ch. 4.7 - Prob. 11ECh. 4.7 - Prob. 12ECh. 4.7 - Prob. 13ECh. 4.7 - Prob. 14ECh. 4.7 - Prob. 15ECh. 4.7 - Prob. 16ECh. 4.7 - Prob. 17ECh. 4.7 - Prob. 18ECh. 4.7 - Prob. 19ECh. 4.7 - Prob. 20ECh. 4.7 - Prob. 21ECh. 4.7 - Prob. 22ECh. 4.7 - (a) Apply Newtons method to the equation x2 a = 0...Ch. 4.7 - (a) Apply Newtons method to the equation 1/x a =...Ch. 4.7 - (a) Use Newtons method with x1 = 1 to find the...Ch. 4.7 - Explain why Newtons method fails when applied to...Ch. 4.7 - Prob. 28ECh. 4.7 - Prob. 29ECh. 4.7 - Prob. 30ECh. 4.7 - Prob. 31ECh. 4.7 - Prob. 32ECh. 4.7 - Prob. 33ECh. 4.7 - Prob. 34ECh. 4.8 - Prob. 1ECh. 4.8 - Prob. 2ECh. 4.8 - Prob. 3ECh. 4.8 - Prob. 4ECh. 4.8 - Prob. 5ECh. 4.8 - Prob. 6ECh. 4.8 - Prob. 7ECh. 4.8 - Prob. 8ECh. 4.8 - Prob. 9ECh. 4.8 - Prob. 10ECh. 4.8 - Prob. 11ECh. 4.8 - Prob. 12ECh. 4.8 - Prob. 13ECh. 4.8 - Prob. 14ECh. 4.8 - Prob. 15ECh. 4.8 - Prob. 16ECh. 4.8 - Prob. 19ECh. 4.8 - Prob. 20ECh. 4.8 - Prob. 21ECh. 4.8 - Prob. 22ECh. 4.8 - Prob. 23ECh. 4.8 - Prob. 24ECh. 4.8 - Prob. 25ECh. 4.8 - Prob. 26ECh. 4.8 - Prob. 27ECh. 4.8 - Prob. 28ECh. 4.8 - Prob. 29ECh. 4.8 - Prob. 30ECh. 4.8 - Prob. 31ECh. 4.8 - Prob. 32ECh. 4.8 - Prob. 33ECh. 4.8 - Prob. 34ECh. 4.8 - Prob. 35ECh. 4.8 - Prob. 36ECh. 4.8 - Prob. 37ECh. 4.8 - Prob. 38ECh. 4.8 - The graph of f is shown in the figure. Sketch the...Ch. 4.8 - Prob. 40ECh. 4.8 - Prob. 41ECh. 4.8 - Prob. 42ECh. 4.8 - Prob. 43ECh. 4.8 - Prob. 44ECh. 4.8 - Prob. 45ECh. 4.8 - Prob. 46ECh. 4.8 - Prob. 47ECh. 4.8 - Prob. 48ECh. 4.8 - Prob. 49ECh. 4.8 - Prob. 50ECh. 4.8 - Prob. 51ECh. 4.8 - Prob. 52ECh. 4.8 - Prob. 53ECh. 4.8 - Prob. 54ECh. 4.8 - Prob. 55ECh. 4.8 - Prob. 56ECh. 4.8 - Prob. 57ECh. 4.8 - Prob. 58ECh. 4 - Prob. 1RCCCh. 4 - Prob. 2RCCCh. 4 - Prob. 3RCCCh. 4 - Prob. 4RCCCh. 4 - Prob. 5RCCCh. 4 - Prob. 6RCCCh. 4 - Prob. 7RCCCh. 4 - Prob. 8RCCCh. 4 - Prob. 9RCCCh. 4 - Prob. 10RCCCh. 4 - Prob. 1RQCh. 4 - Prob. 2RQCh. 4 - Prob. 3RQCh. 4 - Prob. 4RQCh. 4 - Prob. 5RQCh. 4 - Prob. 6RQCh. 4 - Prob. 7RQCh. 4 - Prob. 8RQCh. 4 - Prob. 9RQCh. 4 - Prob. 10RQCh. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 - If f and g are positive increasing functions on an...Ch. 4 - Prob. 15RQCh. 4 - Prob. 16RQCh. 4 - Prob. 17RQCh. 4 - Prob. 18RQCh. 4 - If f(x) exists and is nonzero for all x, then f(1)...Ch. 4 - limx0xex=1Ch. 4 - Prob. 1RECh. 4 - Prob. 2RECh. 4 - Prob. 3RECh. 4 - Prob. 4RECh. 4 - Prob. 5RECh. 4 - Prob. 6RECh. 4 - Prob. 7RECh. 4 - Prob. 8RECh. 4 - Prob. 9RECh. 4 - Prob. 10RECh. 4 - Prob. 11RECh. 4 - Prob. 12RECh. 4 - Prob. 13RECh. 4 - Prob. 14RECh. 4 - Prob. 15RECh. 4 - Prob. 16RECh. 4 - Prob. 17RECh. 4 - Prob. 18RECh. 4 - Prob. 19RECh. 4 - Prob. 20RECh. 4 - Prob. 21RECh. 4 - Prob. 22RECh. 4 - Prob. 23RECh. 4 - Prob. 24RECh. 4 - Prob. 25RECh. 4 - Prob. 26RECh. 4 - Prob. 27RECh. 4 - Prob. 28RECh. 4 - Prob. 29RECh. 4 - Prob. 30RECh. 4 - Prob. 31RECh. 4 - Prob. 32RECh. 4 - Prob. 33RECh. 4 - Prob. 34RECh. 4 - Prob. 35RECh. 4 - Prob. 36RECh. 4 - Prob. 37RECh. 4 - Prob. 38RECh. 4 - Prob. 39RECh. 4 - Prob. 40RECh. 4 - Prob. 41RECh. 4 - Prob. 42RECh. 4 - Prob. 43RECh. 4 - Prob. 44RECh. 4 - Prob. 45RECh. 4 - Prob. 46RECh. 4 - Prob. 47RECh. 4 - Prob. 48RECh. 4 - Prob. 49RECh. 4 - Prob. 50RECh. 4 - Prob. 51RECh. 4 - Prob. 52RECh. 4 - Prob. 53RECh. 4 - Prob. 54RECh. 4 - Prob. 55RECh. 4 - Prob. 56RECh. 4 - Prob. 57RECh. 4 - Prob. 58RECh. 4 - Prob. 59RECh. 4 - Prob. 60RECh. 4 - Prob. 61RECh. 4 - Prob. 62RECh. 4 - Prob. 63RECh. 4 - Prob. 64RECh. 4 - Prob. 65RECh. 4 - If a rectangle has its base on the x-axis and two...Ch. 4 - Show that sinxcosx2 for all x.Ch. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Find the point on the parabola y = 1 x2 at which...Ch. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24P
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY