Tofind:thesmallest possible area of an isosceles that can be circumscribed in a circle.
Answer to Problem 41RE
The minimum area is
Explanation of Solution
Given:
Radius of circle is
Concept used:
Area of triangle
Trigonometric formula:
If
If
Calculation:
By making a diagram of the circle inscribed in the isosceles triangle
The radius of circle
Through this it can be solved as:
Area of triangle
Using trigonometric formula:
Area=
Substituting
Differentiating with respect to d to get:
When
When
Therefor the
Hence the minimum area is
Chapter 4 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning