Materials for Civil and Construction Engineers (4th Edition)
Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.6QP

A round aluminum alloy bar with a 0.6 in. diameter and 2 in. gauge length was subjected to tension to fracture. The load and deformation data were as shown in Table P4.6.

Using a spreadsheet program, obtain the following:

a. A plot of the stress–strain relationship. Label the axes and show units.

b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best fit approach.

c. Proportional limit.

d. Yield stress at an offset strain of 0.002 in/in.

e. Tangent modulus at a stress of 60 ksi.

f. Secant modulus at a stress of 60 ksi.

TABLE P 4. 6

Load (lb) L (in.) Load (lb) L (in.)
0 0.0000 15.500 0.0136
2000 0.0014 16.400 0.0168
4100 0.0028 17.300 0.0220
6050 0.0042 18.000 0.0310
8080 0.0055 18.400 0.0420
10100 0.0070 18.600 0.0528
12000 0.0083 18.800 Fracture
14000 0.0103    
Blurred answer
Students have asked these similar questions
An aluminum alloy bar with a rectangular cross section that has a width of 12.5 mm, thickness of 6.25 mm, and a gauge length of 50 mm was tested in tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P4.6. Using a spreadsheet program, obtain the following: a. A plot of the stress-strain relationship. Label the axes and show units. b. A plot of the linear portion of the stress-strain relationship. Determine the modulus of elasticity using the best fit approach. c. Proportional limit. d. Yield stress at an offset strain of 0.002 m/m. e. Tangent modulus at a stress of 450 MPa. f. Secant modulus at a stress of 450 MPa. TABLE P4.6 Load (kN) AL (mm) Load (kN) AL (mm) 33.5 1.486 3.3 0.025 35.3 2.189 14.0 0.115 37.8 3.390 25.0 0.220 39.8 4.829 29.0 0.406 40.8 5.961 30.6 0.705 41.6 7.386 31.7 0.981 41.2 8.047 32.7 1.245
A high-yield-strength alloy steel bar with a rectangular cross section that has a width of 37.5 mm, a thickness of 6.25 mm, and a gauge length of 203 mm was tested in tension to rupture, according to ASTM E-8 method. The load and deformation data were as shown in Table Using a spreadsheet program, obtain the following:a. A plot of the stress–strain relationship. Label the axes and show units.b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best-fit approach.c. Proportional limit.d. Yield stress.e. Ultimate strength.f. If the specimen is loaded to 155 kN only and then unloaded, what is the permanent deformation?g. In designing a typical structure made of this material, would you expect the stress applied in (f) safe? Why?
A round aluminum alloy bar with a 0.25-in. diameter and a 1-in. gauge length was tested in tension to fracture according to ASTM E-8 method. The load and deformation data were as shown in Table P4.8.Using a spreadsheet program, obtain the following: a. A plot of the stress–strain relationship. Label the axes and show units. b. A plot of the linear portion of the stress–strain relationship. Determine modulus of elasticity using the best fit approach. c. Proportional limit. d. Yield stress at an offset strain of 0.002 in/in. e. Initial tangent modulus. f. If the specimen is loaded to 3200 lb only and then unloaded, what is the permanent change in gauge length? g. When the applied load was 1239 lb, the diameter was measured as 0.249814 in. Determine Poisson’s ratio.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY