Materials for Civil and Construction Engineers (4th Edition)
Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 4, Problem 4.3QP

An aluminum alloy specimen with a radius of 0.28 in. was subjected to tension until fracture and produced results shown in Table P4.3.

a. Using a spreadsheet program, plot the stress–strain relationship.

b. Calculate the modulus of elasticity of the aluminum alloy.

TABLE P4.3

Stress, ksi Strain, 10−3 in./in.
0 0.0
8 0.6
17 1.5
27 2.4
35 3.2
43 4.0
50 4.6
58 5.2
62 5.8
64 6.2
65 6.5
67 7.3
68 8.1
  9.7

c. Determine the proportional limit.

d. What is the maximum load if the stress in the bar is not to exceed the proportional limit?

e. Determine the 0.2% offset yield strength.

f. Determine the tensile strength.

g. Determine the percent of elongation at failure.

Blurred answer
Students have asked these similar questions
S Figure P1.16 shows the stress-strain relations of metals A and B during ten- sion tests until fracture. Determine the following for the two metals (show all calculations and units): a. Proportional limit b. Yield stress at an offset strain of 0.002 m/m. c. Ultimate strength d. Modulus of resilience e. Toughness f. Which metal is more ductile? Why? 900 Metal A 600 Metal B 300 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Strain, m/m FIGURE P1.16 Stress, MPa
A round steel alloy bar with a diameter of 19 mm and a gauge length of 76 mm was subjected to tension, with the results shown in Table P3.26. Using a computer spreadsheet program, plot the stress-strain relationship. From the graph, determine the Young's modulus of the steel alloy and the deformation corresponding to a 37 kN load. TABLE P3.26 Deformation, Load, kN mm 9 0.0286 18 0.0572 27 0.0859 36 0.1145 45 0.1431 54 0.1718
An aluminum alloy bar with a radius of 7 mm was subjected to tension until fracture and produced results shown in Table P4.3. a. Using a spreadsheet program, plot the stress–strain relationship. b. Calculate the modulus of elasticity of the aluminum alloy. c. Determine the proportional limit. d. What is the maximum load if the stress in the bar is not to exceed the proportional limit? e. Determine the 0.2% offset yield strength. f. Determine the tensile strength. g. Determine the percent of elongation at failure.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY