Materials for Civil and Construction Engineers (4th Edition)
Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.15QP

A tension test was performed on an aluminum alloy specimen to fracture. The original diameter of the specimen is 0.5 in. and the gauge length is 2.0 in. The information obtained from this experiment consists of applied tensile load (P) and increase in length (ΔL). The results are tabulated in Table P4.15. Using a spreadsheet program, complete the table by calculating engineering stress (σ) and engineering strain (ε). Determine the toughness of the material (ut) by calculating the area under the stress–strain curve, namely,

u t = 0 ε f σdε

where εf is the strain at fracture. The preceding integral can be approximated numerically using a trapezoidal integration technique:

u t = i = 1 n u i = i = 1 n 1 2 ( σ i + σ i 1 ) ( ε i ε i 1 )

Chapter 4, Problem 4.15QP, A tension test was performed on an aluminum alloy specimen to fracture. The original diameter of the

Blurred answer
Students have asked these similar questions
A tensile test specimen of aluminum alloy having a diameter of 0.5 in. and a gage length of 2 in. was tested to fracture. The complete stress-strain diagram for this specimen is shown below to the left. The small strain portion of this diagram has been enlarged (to the right) to show in more detail the linear portion of the stress-strain diagram. Determine (a) Young's modulus or modulus of elasticity (i.e., the slope of linear portion), (b) yield stress (using the so-called 0.2% offset method from the lecture notes), (c) yield strain (i.e., the strain corresponding to yield stress, not the 0.2%!), (d) ultimate strength (i.e., the peak in stress-strain diagram), (e) rupture stress (i.e., stress at breaking/failure), (f) rupture strain (i.e., the strain corresponding to rupture stress). 80 70 70 60 60 50 50 40 30 30 20 20 10 10 0.005 0.01 0.015 0.02 Strain (in/in) Strain (in/in) Stress (ksi) 0.015 - 0.03 - 0.12 - 0.135 - 0.15 Stress (ksi)
The elastic portion of the tension stress–strain diagram for an aluminum alloy is shown in the figure. The specimen used for the test has a gauge length of 2 in. and a diameter of 0.5 in. If the applied load is 10 kip, determine the new diameter of the specimen. The shear modulus is Gal = 3.8(103) ksi.
The stress–strain relation shown in Figure was obtained during the tensile test of an aluminum alloy specimen. Determine the Yield stress using an offset of 0.002 strain.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY