Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.37E
Interpretation Introduction
Interpretation:
The relation
Concept introduction:
The Maxwell relations are the equations showing the relation between the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Express (∂Cp/∂P)T as a second derivative of H and find its relation to (∂H/∂P)T. (b) From the relationships found in (a), show that (∂Cp/∂V)T=0 for a perfect gas.
Calculate V−1(∂V/∂T)p,n for an ideal gas?
Since we will be dealing with partial derivatives later in the semester, this is a good opportunity to review this topic (see appendix C). Then evaluate the following partial derivatives
(a) PV = nRT; (∂ P/∂V)T
(b) r = (x2 + y2 + z 2 )1/2; (∂ r/∂y)x,z
Chapter 4 Solutions
Physical Chemistry
Ch. 4 - List the sets of conditions that allow dS, dU, and...Ch. 4 - Explain why conditions for using S>0 as a strict...Ch. 4 - Explain how the equation dU+pdVTdS0 is consistent...Ch. 4 - Explain why the spontaneity conditions given in...Ch. 4 - Prove that the adiabatic free expansion of an...Ch. 4 - Derive equation 4.6 from equation 4.5.Ch. 4 - Derive equation 4.8 from equation 4.7.Ch. 4 - The third part of equation 4.9 mentions a...Ch. 4 - Calculate A for a process in which 0.160mole of an...Ch. 4 - What is the maximum amount of non-pV work that can...
Ch. 4 - Consider a piston whose compression ratio is 10:1;...Ch. 4 - When one dives, water pressure increases by 1atm...Ch. 4 - Calculate G(25C) for this chemical reaction, which...Ch. 4 - Thermodynamic properties can also be determined...Ch. 4 - Calculate G in two different ways for the...Ch. 4 - Calculate G in two different ways for the...Ch. 4 - For the reaction C(graphite)C(diamond) at 25C,...Ch. 4 - Determine G for the following reaction at 0C and...Ch. 4 - What is the maximum amount of electrical that is,...Ch. 4 - When a person performs work, it is non-pV work....Ch. 4 - Can non-pV work be obtained from a process for...Ch. 4 - Can pV work be obtained from a process for which...Ch. 4 - Batteries are chemical systems that can be used to...Ch. 4 - The value of G for any phase change at constant p...Ch. 4 - The value of G for any phase change at constant p...Ch. 4 - Under what conditions is A=0 for a phase change?...Ch. 4 - Example 4.2 calculated A for one step of a Carnot...Ch. 4 - Can CV and Cp be easily defined using the natural...Ch. 4 - Analogous to equation 4.26, what is the expression...Ch. 4 - Prob. 4.30ECh. 4 - Prob. 4.31ECh. 4 - Prob. 4.32ECh. 4 - Although ideally, U=H=0 for a gas-phase process at...Ch. 4 - Use equations 4.21 and 4.25 to explain why H and G...Ch. 4 - Prob. 4.35ECh. 4 - Which of the following functions are exact...Ch. 4 - Prob. 4.37ECh. 4 - Prob. 4.38ECh. 4 - Prob. 4.39ECh. 4 - Equation 4.19 says that (UV)S=p If we are...Ch. 4 - For an isentropic process, what is the approximate...Ch. 4 - Use the ideal gas law to demonstrate the cyclic...Ch. 4 - Prob. 4.43ECh. 4 - Prob. 4.44ECh. 4 - Evaluate (U/V)T for an ideal gas. Use the...Ch. 4 - Evaluate (U/V)T for a van der Waals gas. Use the...Ch. 4 - Repeat the previous exercise for a gas that...Ch. 4 - Determine an expression for (p/S)T for an ideal...Ch. 4 - Determine the value of the derivative {[(G)]/T}p...Ch. 4 - Prob. 4.50ECh. 4 - Prob. 4.51ECh. 4 - A 0.988-mole sample of argon expands from 25.0L to...Ch. 4 - A 3.66-mol sample of He contracts from 15.5L to...Ch. 4 - Prob. 4.54ECh. 4 - Prob. 4.55ECh. 4 - Use the Gibbs-Helmholtz equation to demonstrate...Ch. 4 - For the equation 2H2(g)+O2(g)2H2O(g)...Ch. 4 - Use equation 4.46 as an example and find an...Ch. 4 - What is the value of G when 1.00mol of water at...Ch. 4 - Prob. 4.60ECh. 4 - Prob. 4.61ECh. 4 - Prob. 4.62ECh. 4 - Prob. 4.63ECh. 4 - Prob. 4.64ECh. 4 - What is the change in the chemical potential of a...Ch. 4 - Prob. 4.66ECh. 4 - Prob. 4.67ECh. 4 - Prob. 4.68ECh. 4 - Prob. 4.69ECh. 4 - Can equation 4.62 be used to calculate for an...Ch. 4 - Prob. 4.71ECh. 4 - Of helium and oxygen gases, which one do you...Ch. 4 - Prob. 4.73ECh. 4 - Use equation 4.39 to determine a numerical value...Ch. 4 - Prob. 4.75ECh. 4 - Prob. 4.76E
Knowledge Booster
Similar questions
- A 0.250 mol nitrogen initially at 50 °C with a volume of 8.00 L is allowed to expand reversibly and adiabatically until its volume has doubled. Calculate the value of ΔHwhen Cp = 7/2R.arrow_forwardEstimate the values of γ = Cp,m/CV,m for gaseous ammonia and methane. Do this calculation with and without the vibrational contribution to the energy. Which is closer to the experimental value at 25 °C? Hint: Note that Cp,m − CV,m = R for a perfect gas.arrow_forward2. Given the equation S, - S, = dq use appropriate thermodynamic equations T V. to show that S, -S, = nC, In |+ nC, In Pi V,arrow_forward
- Calculate the work done during the isothermal reversible expansion of a gas that satisfies the virial equation of state (eqn 1C.3b) written with the first three terms. Evaluate (a) the work for 1.0 mol Ar at 273 K (for data, see Table 1C.3) and (b) the same amount of a perfect gas. Let the expansion be from 500 cm3 to 1000 cm3 in each case.arrow_forwardUse the equipartition principle to estimate the value of γ = Cp/CV for carbon dioxide. Do this calculation with and without the vibrational contribution to the energy. Which is closer to the experimental value at 25 °C?arrow_forwardThe density of lead is 1.13 ✕ 104 kg/m3 at 20.0°C. Find its density (in kg/m3) at 100°C. (Use ? = 29 ✕ 10−6 (°C)−1 for the coefficient of linear expansion. Give your answer to at least four significant figures.)arrow_forward
- Nitesharrow_forwardThe cohesive energy density, U, is defined as U/V, where U is the mean potential energy of attraction within the sample and V its volume. Show that U = 1/2N2∫V(R)dτ where N is the number density of the molecules and V(R) is their attractive potential energy and where the integration ranges from d to infinity and over all angles. Go on to show that the cohesive energy density of a uniform distribution of molecules that interact by a van der Waals attraction of the form −C6/R6 is equal to −(2π/3)(NA2/d3M2)ρ2C6, where ρ is the mass density of the solid sample and M is the molar mass of the molecules.arrow_forward1. Determine the work done in an isothermal, reversible expansion of a real gas obeying the virial equation of state, PV = A + BP + CP².arrow_forward
- A sample of Ar of mass 8.30 g occupies 1.75dm3 at 330 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 1 bar until itsvolume has increased by 0.35 dm3 (b) Calculate the work that would be done if thesame expansion occurred reversiblyarrow_forwardUse the equipartition principle to estimate the values of γ = Cp/CV for gaseous ammonia and methane. Do this calculation with and without the vibrational contribution to the energy. Which is closer to the experimental value at 25 °C?arrow_forwardA sample of 2.2 mol CO2(g) is originally confined in 15 dm3 at 280 K and then undergoes adiabatic expansion against a constant pressure of 78.5 kPa until the volume has increased by a factor of 4.0. Calculate ΔT. (The final pressure of the gas is not necessarily 78.5 kPa.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,