Physical Chemistry
Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
Question
Book Icon
Chapter 4, Problem 4.30E
Interpretation Introduction

Interpretation:

The expression dS=ακdV+(S/p)V(S/p)VdT is to be derived.

Concept introduction:

The Maxwell relations are the equations showing the relation between thermodynamic properties. These relations are obtained due to the thermodynamic functions being the exact differentials. These relations show the dependency of the different thermodynamic properties on each other.

Blurred answer
Students have asked these similar questions
Use the equipartition principle to estimate the value of γ = Cp/CV for carbon dioxide. Do this calculation with and without the vibrational contribution to the energy. Which is closer to the experimental value at 25 °C?
Calculate V−1(∂V/∂T)p,n for an ideal gas?
Calculate the work done during the isothermal reversible expansion of a gas that satisfies the virial equation of state (eqn 1C.3b) written with the first three terms. Evaluate (a) the work for 1.0 mol Ar at 273 K (for data, see Table 1C.3) and (b) the same amount of a perfect gas. Let the expansion be from 500 cm3 to 1000 cm3 in each case.

Chapter 4 Solutions

Physical Chemistry

Ch. 4 - Consider a piston whose compression ratio is 10:1;...Ch. 4 - When one dives, water pressure increases by 1atm...Ch. 4 - Calculate G(25C) for this chemical reaction, which...Ch. 4 - Thermodynamic properties can also be determined...Ch. 4 - Calculate G in two different ways for the...Ch. 4 - Calculate G in two different ways for the...Ch. 4 - For the reaction C(graphite)C(diamond) at 25C,...Ch. 4 - Determine G for the following reaction at 0C and...Ch. 4 - What is the maximum amount of electrical that is,...Ch. 4 - When a person performs work, it is non-pV work....Ch. 4 - Can non-pV work be obtained from a process for...Ch. 4 - Can pV work be obtained from a process for which...Ch. 4 - Batteries are chemical systems that can be used to...Ch. 4 - The value of G for any phase change at constant p...Ch. 4 - The value of G for any phase change at constant p...Ch. 4 - Under what conditions is A=0 for a phase change?...Ch. 4 - Example 4.2 calculated A for one step of a Carnot...Ch. 4 - Can CV and Cp be easily defined using the natural...Ch. 4 - Analogous to equation 4.26, what is the expression...Ch. 4 - Prob. 4.30ECh. 4 - Prob. 4.31ECh. 4 - Prob. 4.32ECh. 4 - Although ideally, U=H=0 for a gas-phase process at...Ch. 4 - Use equations 4.21 and 4.25 to explain why H and G...Ch. 4 - Prob. 4.35ECh. 4 - Which of the following functions are exact...Ch. 4 - Prob. 4.37ECh. 4 - Prob. 4.38ECh. 4 - Prob. 4.39ECh. 4 - Equation 4.19 says that (UV)S=p If we are...Ch. 4 - For an isentropic process, what is the approximate...Ch. 4 - Use the ideal gas law to demonstrate the cyclic...Ch. 4 - Prob. 4.43ECh. 4 - Prob. 4.44ECh. 4 - Evaluate (U/V)T for an ideal gas. Use the...Ch. 4 - Evaluate (U/V)T for a van der Waals gas. Use the...Ch. 4 - Repeat the previous exercise for a gas that...Ch. 4 - Determine an expression for (p/S)T for an ideal...Ch. 4 - Determine the value of the derivative {[(G)]/T}p...Ch. 4 - Prob. 4.50ECh. 4 - Prob. 4.51ECh. 4 - A 0.988-mole sample of argon expands from 25.0L to...Ch. 4 - A 3.66-mol sample of He contracts from 15.5L to...Ch. 4 - Prob. 4.54ECh. 4 - Prob. 4.55ECh. 4 - Use the Gibbs-Helmholtz equation to demonstrate...Ch. 4 - For the equation 2H2(g)+O2(g)2H2O(g)...Ch. 4 - Use equation 4.46 as an example and find an...Ch. 4 - What is the value of G when 1.00mol of water at...Ch. 4 - Prob. 4.60ECh. 4 - Prob. 4.61ECh. 4 - Prob. 4.62ECh. 4 - Prob. 4.63ECh. 4 - Prob. 4.64ECh. 4 - What is the change in the chemical potential of a...Ch. 4 - Prob. 4.66ECh. 4 - Prob. 4.67ECh. 4 - Prob. 4.68ECh. 4 - Prob. 4.69ECh. 4 - Can equation 4.62 be used to calculate for an...Ch. 4 - Prob. 4.71ECh. 4 - Of helium and oxygen gases, which one do you...Ch. 4 - Prob. 4.73ECh. 4 - Use equation 4.39 to determine a numerical value...Ch. 4 - Prob. 4.75ECh. 4 - Prob. 4.76E
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,