Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.140P
A thin circular disk is subjected to induction heating from a coil, the effect of which is to provide a uniform heat generation within a ring Section as shown. Convection occurs at the upper surface, while the lower surface is well insulated.
(a) Derive the transient, finite-difference equation for node m, which is within the region subjected to induction heating.
(b) On
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
8. The shown 2-D plate is in contact with a heat source at its upper edge, which supplies heat
at a constant flux, qo, per unit length.
--
a. Derive a finite-difference relationship to express the steady-state temperature at the
shown boundary point TP, in terms of the temperatures at the surrounding points (TE, Tw,
Ts) and the other quantities in the problem (e.g., k, qo, etc.). Follow the methodology
outlined in the class notes (i.e., use energy balance). Assume Ax = Ay.
y
90
b. Modify the relationship for the case when the upper edge is perfectly insulated (without
heat addition).
3. A thin metallic wire of thermal conductivity k, diameter D, and length 2L is annealed by passing
an electrical current through the wire to induce a uniform volumetric heat generation åg. The
ambient air around the wire is at a temperature To, while the ends of the wire at x
A solid cylinder of radius R and length L is made from material with thermal conductivity 2.
Heat is generated inside the cylinder at a rate S (energy per unit volume per unit time).
(a) Neglecting conduction along the axis of the cylinder, find the steady-state temperature
distribution in the cylinder, given that the surface temperature is Ts.
(b) Consider a crude approximation of a mouse modeled as a cylinder of radius 1 cm and
length 5 cm. If the ambient air temperature is 10°C and the internal rate of heat
generation in the animal is 10-³ W/cm³, find the skin temperature (Ts) for the mouse. The
external heat-transfer coefficient is h = 0.2 W/m².K. (You can neglect conduction along
the axis of the mouse, as in part a.)
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The steady-state temperature distribution in a one-dimensional wall of thermal conductivity 50 W/m -K and thickness 50 mm is observed to be T(°C) = a + bx, where a = 200 °C, b=-2000 °C/m², and x is in meters. i. ii. What is the heat generation rate in the wall? (8) Determine the heat fluxes at the two wall faces. In what manner are these heat fluxes related to the heat generation rate? (arrow_forwardThe composite wall of an oven consists of three materials, two of which are of known thermal conductivity, kA 20 W/m K and kC50 W/m K, and known thickness, LA 0.30 m and LC 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, LB 0.15 m, but unknown thermal conductivity kB. Under steady-state operating conditions, measurements reveal an outer surface temperature of Ts,o 20°C, an inner surface temperature of Ts,i 600°C, and an oven air temperature of T 800°C. The inside convection coefficient h is known to be 25 W/m2 K. What is the value of kB?arrow_forwardPls handwritearrow_forward
- 25. Develop an algorithm, along with the program (in python), to find the temperature distribution in the Problem 5.102 NOTE: Use the explicit finite differences method 5.102 Consider the fuel element of Example 5.9. Initially, the element is at a uniform temperature of 250°C with no heat generation. Suddenly, the element is inserted into the reactor core causing a uniform volumetric heat generation rate of q = 108 W/m³. The surfaces are convectively cooled with T = 250°C and_h= 1100 W/m² K. Using the explicit method with a space increment of 2 mm, determine the temperature distribution 1.5 s after the element is inserted into the core. EXAMPLE 5.9 A fuel element of a nuclear reactor is in the shape of a plane wall of thickness 2L = 20 mm and is convectively cooled at both surfaces, with h = 1100 W/m². K and T=250°C. At normal operating power, heat is generated uniformly within the element at a volumetric rate of q₁ = 107 W/m³. A departure from the steady-state conditions associated…arrow_forwardFig. 4 illustrates an insulating wall of three homogeneous layers with conductivities k1, k2, and k3 in intimate contact. Under steady state conditions, both right and left surfaces are exposed to a temperature in a steady state condition at ambient temperatures of T and T , respectively, while ß, and BLare the film coefficients respectively. Assume that there is no internal heat generation and that the heat flow is one-dimensional (dT/dy = 0). For the illustrated ambient temperature in Fig. 4, determine the temperature's distribution at each layer. Material 3 Material 1 Material 2 T= 100 T= 35 °C Kı=20 K3=50 (W/m.k) K3=30 (W/m.k) B1= 10 w/m² °K (W/m.k) BR= 15 w/m²°K 50 mm 35 mm 25 cm Fig. 4arrow_forwardPlease don't provide handwritten solution ....arrow_forward
- 1. Consider a square plate of side a and assume that the plate is so thin that the temperature gradient in the thickness direction is negligible compared to the lateral temperature gradients. The temperature on the lateral surfaces is T, and convective heat transfer boundary condition applies on the front and the back surfaces. Thickness of the plate is t. Assume that the material properties are constant. (a) Starting from the basic principles obtain the governing differential equation for the time- dependent temperature field in the plate assuming that there is internal energy generation at a uniform rate ġ per unit volume. (b) Determine the steady-state temperature distribution in the plate. (c) Find the steady-state temperature distribution T(x, z) in the plate by applying a finite- difference method. Assume T, = 400 K, T. = 200 K, h = 100 W/m²K, k = 200 W/mK, t = 0.01 m, a =1 m and ġ =1 W/m³. (d) Compare the numerical results with the analytical solution of the problem. Find the…arrow_forwardConsider a solid sphere of radius R with a fixed surface temperature, TR. Heat is generated within the solid at a rate per unit volume given by q = ₁ + ₂r; where ₁ and ₂ are constants. (a) Assuming constant thermal conductivity, use the conduction equation to derive an expression for the steady-state temperature profile, T(r), in the sphere. (b) Calculate the temperature at the center of the sphere for the following parameter values: R=3 m 1₁-20 W/m³ TR-20 °C k-0.5 W/(m K) ₂-10 W/m³arrow_forward11. The shown 2-D plate is in contact with a heat source at its upper edge, which supplies heat at a constant flux, qo, per unit length. a. Derive a finite-difference relationship to express the steady-state temperature at the shown boundary point Tp, in terms of the temperatures at the surrounding points (TE, Tw, Ts) and the other quantities in the problem (e.g., k, qo, etc.). Follow the methodology outlined in the class notes (i.e., use energy balance). Assume Ax = Ay. y Яo хarrow_forward
- (b) Your friend argues that a symmetry boundary condition in a slab can be treated as an adiabatic boundary condition on the half-slab. To make her case, she draws the two configurations (A and B) of long and wide slabs generating heat uniformly as shown in the figure (Fig. 1), where L and T, (surface temperature) are known and same for these two configurations. She claims that if thermal conductivity and volumetric heat generation rates are same for these two configurations, the temperature profile in the slabs will be identical (i.e., temperature profile in B will look similar to that in A). Do you agree with your friend? Provide justifications. y Z 12. X Ts A Symmetry L Ts Insulated Z X Figure 1: Schematic for Question 1(b) L B Tsarrow_forwardAfter a thorough derivation by Doraemon to establish an equation for cylindrical fuel rod of a nuclear reactor. Here he was able to come up an equation of heat generated internally as shown below. 9G = 9. where qG is the local rate of heat generation per unit volume at radius r, ro is the outside radius, and qo is the rate of heat generation per unit volume at the centre line. Calculate the temperature drop from the centre line to the surface for a 2.5 cm outer diameter rod having k = 25 W/m K, if the rate of heat removal from the surface is 1650 kW/m² А) 619°C В 719 °C C) 819 °C D) 919 °C E 1019 °C F None of thesearrow_forwardA small sphere of density rho, diameter D and heat generation gdot0 is exposed to a fluid at Tinf with a heat transfer coefficient h. Determine an expression for the steady-state temperature of the sphere, assuming isothermal behavior. At t = 0, the heat generation begins to display the transient decay gdot = gdot0*exp(-B*t) where gdot0 and B are constants. Derive an expression for the transient temperature response of the sphere, T(t). What is the final temperature of the sphere?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license