(a)
Interpretation:
The atom with smaller atomic radius has to be given.
The given diagram is,
Figure 1
Concept Introduction:
Atomic Radius:
Atomic radius is the distance from the centre of the nucleus to the outermost shell containing electrons. The atomic radius of an element decreases along the period and increases down the group.
(b)
Interpretation:
The atom with lower ionization energy has to be given.
The given diagram is,
Figure 1
Concept Introduction:
Ionization energy:
Ionization energy is defined as the energy required removing one mole of electron from one mole of isolated gaseous atom or ion. Ionization energy of an element increases along the period and decreases down the group.
(c)
Interpretation:
The elements in the diagram have to be identified.
The given diagram is,
Figure 1
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Principles of General, Organic, Biological Chemistry
- (a) Describe the trends of atomic size and ionization energy, respectively, in the Periodic Table: (1) from left to right across a period, and (ii) from top to bottom down a group. (b) Rank the following elements: Na, Mg, Al, and K, in increasing order of: (i) atomic size; (ii) ionization energy, and (iii) reactivity. (c) Rank the following elements: F, CI, Br and I, in increasing order of: (i) atomic size; (ii) electron affinity, (iii) electronegativity, and (iv) reactivity.arrow_forwardQuestion:Consider two elements, Element A and Element B, from the periodic table. Element A is located in Group 1 and Period 3, while Element B is located in Group 16 and Period 2. (a) Which element would have a larger atomic radius, Element A or Element B? Justify your answer. (b) Predict the ionization energy of Element A and Element B. Which element would have a higher ionization energy? Explain your reasoning. (c) Based on their positions in the periodic table, which element would be more likely to form a stable cation? Provide a brief explanation for your choice.arrow_forwardArrange in order of increasing ionization energy. (a) the Group 1A elements H, Li, and Cs (b) the Period 4 elements As, K, & Searrow_forward
- Boron, atomic number 5, occurs naturally as two isotopes, 10B and 11B, with natural abundances of 19.9% and 80.1%, respectively. (a) In what ways do the two isotopes differ from each other? Does the electronic configuration of 10B differ from that of 11B? (b) Draw the orbital diagram for an atom of 11B. Which electrons are the valence electrons? (c) Indicate three ways in which the 1s electrons in boron differ from its 2s electrons. (d) Elemental boron reacts with fluorine to form BF3, a gas. Write a balanced chemical equation for the reaction of solid boron with fluorine gas. (e) ΔHf° for BF3(g) is -1135.6 kj/mol. Calculate the standard enthalpy change in the reaction of boron with fluorine. (f) Will the mass percentage of F be the same in 10BF3 and 11BF3? If not, why is that the case?arrow_forwardWhich of the following elements is expected to have the highest SECOND IONIZATION ENERGY: (A) Be (B) Ca (C) Mg (D) Naarrow_forwardWhat is meant by the ground state of an atom? (a) All of the quantum numbers have their lowest values (n = 1, l = m = 0). (b) The principal quantum number of the electrons in the outer shell is 1. (c) All of the electrons are in the lowest energy state, consistent with the exclusion principle. (d) The electrons are in the lowest state allowed by the uncertainty principle.arrow_forward
- (a) Why do successive IEs of a given element always increase? (b) When the difference between successive IEs of a given element is exceptionally large (for example, between IE1 and IE2 of K), what do we learn about its electron configuration? (c) The bars represent the relative magnitudes of the first five ionization energies of an atom: Identify the element and write its complete electron config uration, assuming it comes from (a) Period 2; (b) Period 3; (c) Period 4.arrow_forwardBoron, atomic number 5, occurs naturally as two isotopes, 10B and 11B, with natural abundances of 19.9% and 80.1%, respectively.(a) In what ways do the two isotopes differ from each other? Does the electronic configuration of 10B differ from that of 11B? (b) Drawthe orbital diagram for an atom of 11B. Which electrons are the valence electrons? (c) Indicate three ways in which the 1s electrons inboron differ from its 2s electrons. (d) Elemental boron reacts with fluorine to form BF3, a gas. Write a balanced chemical equation forthe reaction of solid boron with fluorine gas. (e) ΔHf° for BF31g2 is -1135.6 kJ>mol. Calculate the standard enthalpy change in thereaction of boron with fluorine. (f) Will the mass percentage of F be the same in 10BF3 and 11BF3? If not, why is that the case?arrow_forward(a) Write out the full electron configuration of Calcium (Ca). (b) How many electrons are in the n=3 shell of Calcium?arrow_forward
- What are ionization energy for atoms : (a) Sr (b) P (c) Rbarrow_forwardWrite the ground-state electron configurations of the following ions. (a) Li+ (b) N3− (c) In3+ (Use the noble gas core electron configuration in your answer.) (d) Tl+ (Use the noble gas core electron configuration in your answer.)arrow_forward2. The ionization energy of an element is defined as the amount of energy required to remove an electron from an individual atom. The following table gives the ionization energy (in units of kilojoules per mole) for five metals, listed in alphabetical order. Locate each of these metals on the periodic table and arrange them in order of rows and columns as in the periodic table. (a) Describe the periodic trend in the ionization energy of elements within a group. (b) Describe the periodic trend in the ionization energy of elements across a period. Metal Calcium Magnesium Potassium Sodium Strontium Ionization Energy 590 738 419 496 549 Materialsarrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning