Concept explainers
A method for determining the thermal conductivity k and the specific heat
Determine the specific heat and thermal conductivityof the test material. By looking at values of the thermophysicalproperties in Table A.1 or A.2, identify thetest sample material.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Introduction to Heat Transfer
- 1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forwardA section of a composite wall with the dimensions shown below has uniform temperatures of 200C and 50C over the left and right surfaces, respectively. If the thermal conductivities of the wall materials are: kA=70W/mK,kB=60W/mK, kC=40W/mK, and kP=20W/mK, determine the rate of heat transfer through this section of the wall and the temperatures at the interfaces. Repeat Problem 1.34, including a contact resistance of 0.1 K/W at each of the interfaces.arrow_forwardA square silicon chip 7mm7mm in size and 0.5-mm thick is mounted on a plastic substrate as shown in the sketch below. The top surface of the chip is cooled by a synthetic liquid flowing over it. Electronic circuits on the bottom of the chip generate heat at a rate of 5 W that must be transferred through the chip. Estimate the steady-state temperature difference between the front and back surfaces of the chip. The thermal conductivity of silicon is 150 W/m K. Problem 1.6arrow_forward
- 5.10 Experiments have been performed on the temperature distribution in a homogeneous long cylinder (0.1 m diameter, thermal conductivity of 0.2 W/m K) with uniform internal heat generation. By dimensional analysis, determine the relation between the steady-state temperature at the center of the cylinder , the diameter, the thermal conductivity, and the rate of heat generation. Take the temperature at the surface as your datum. What is the equation for the center temperature if the difference between center and surface temperature is when the heat generation is ?arrow_forwardA section of a composite wall with the dimensions shown below has uniform temperatures of 200C and 50C over the left and right surfaces, respectively. If the thermal conductivities of the wall materials are: kA=70W/mK,kB=60W/mK, kC=40W/mK, and kD=20W/mK, determine the rate of heat transfer through this section of the wall and the temperatures at the interfaces.arrow_forward1.3 A furnace wall is to be constructed of brick having standard dimensions of Two kinds of material are available. One has a maximum usable temperature of 1040°C and a thermal conductivity of 1.7 W/(m K), and the other has a maximum temperature limit of 870°C and a thermal conductivity of 0.85 W/(m K). The bricks have the same cost and are laid in any manner, but we wish to design the most economical wall for a furnace with a temperature of 1040°C on the hot side and 200°C on the cold side. If the maximum amount of heat transfer permissible is 950 , determine the most economical arrangement using the available bricks.arrow_forward
- Heat is generated uniformly in the fuel rod of a nuclear reactor. The rod has a long, hollow cylindrical shape with its inner and outer surfaces at temperatures of TiandTo, respectively. Derive an expression for the temperature distribution.arrow_forwardWhat is the analogical reason between heat transfer by conduction and flow of electricity through ohmic resistance? Use a composite wall of a building to illustrate the concept. A composite slab with three layers of thermal conductivities k1, k2, k3 and thickness ti, t2, të respectively, are placed in a close contact. Derive an expression from the first principle for the heat flow through the composite slab per unit surface area in terms of the overall temperature difference across the slab.arrow_forwardThe steady-state temperature distribution in a one[1]dimensional wall of thermal conductivity 50 W /m · K and thickness 40 mm is observed to be T(°C) = a + bx², where a = 200°C, b = -2000°C/m2, and x is in meters. (a) What is the heat generation rate in the wall? (b) Determine the heat fluxes at the two wall faces. In what manner are these heat fluxes related to the heat generation rate?arrow_forward
- Please help me answer question 1, show all the steps taken.arrow_forwardFROM THE BOOK: ENGINEERING THERMOFLUIDS, M. MASSOUD.arrow_forwardA hollow infinite cylinder has internal radius 0.5 and exterior radius 2.0. The external surface is maintained at 0°C and the internal surface at 100°C. Initially the cylinder has a uniform temperature of 15°C and it is required to compute the distribution of temperature across the radius as time progresses. Use an explicit method with a suitable time step to compute the temperature for r = 0.5(0.25)2.0 for the first few time steps.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning