Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 14.40E
Interpretation Introduction
Interpretation:
The approximate centrifugal distortion constant for
Concept introduction:
An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the rotational spectrum of a linear molecule at 298 K with a moment of inertia of 1.23×10−461.23\times10^{-46}1.23×10−46 kg m2 .
(a) What is the frequency for the transition from J = 2 to J = 3?
(b) What is the most populated rotational level for this molecule? Would the transition in (a) give the most intense signal in the rotational spectrum?
The vibrational wavenumber of the oxygen molecule in its electronic ground state is 1580 cm−1, whereas that in the excited state (B 3Σu−), to which there is an allowed electronic transition, is 700 cm−1. Given that the separation in energy between the minima in their respective potential energy curves of these two electronic states is 6.175 eV, what is the wavenumber of the lowest energy transition in the band of transitions originating from the v = 0 vibrational state of the electronic ground state to this excited state? Ignore any rotational structure or anharmonicity.
A molecule in a liquid undergoes about 1.0 × 1013 collisions in each second. Suppose that (i) every collision is effective in deactivating the molecule vibrationally and (ii) that one collision in 100 is effective. Calculate the width (in cm−1) of vibrational transitions in the molecule.
Chapter 14 Solutions
Physical Chemistry
Ch. 14 - Prob. 14.1ECh. 14 - Determine if the following integrals can be...Ch. 14 - What is the frequency of light having the...Ch. 14 - What is the wavelength of light having the given...Ch. 14 - What is the energy of light having each...Ch. 14 - The Cu(H2O)62+ complex has octahedral symmetry. Is...Ch. 14 - What are the wavelength, speed, and energy of a...Ch. 14 - Prob. 14.8ECh. 14 - Prob. 14.9ECh. 14 - Prob. 14.10E
Ch. 14 - Prob. 14.11ECh. 14 - Prob. 14.12ECh. 14 - Prob. 14.13ECh. 14 - Prob. 14.14ECh. 14 - Diatomic sulfur, S2, was detected in the tail of...Ch. 14 - Prob. 14.16ECh. 14 - Prob. 14.17ECh. 14 - Prob. 14.18ECh. 14 - Prob. 14.19ECh. 14 - Prob. 14.20ECh. 14 - Prob. 14.21ECh. 14 - Prob. 14.22ECh. 14 - Which of the following molecules should have pure...Ch. 14 - Which of the following molecules should have pure...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - Derive equation 14.21 from the E expression...Ch. 14 - Prob. 14.28ECh. 14 - Prob. 14.29ECh. 14 - Lithium hydride, 7Li1H, is a potential fuel for...Ch. 14 - Prob. 14.31ECh. 14 - Prob. 14.32ECh. 14 - Prob. 14.33ECh. 14 - Prob. 14.34ECh. 14 - Prob. 14.35ECh. 14 - Prob. 14.36ECh. 14 - From the data in Table 14.2, predict B for DCl D...Ch. 14 - A colleague states that the pure rotational...Ch. 14 - Prob. 14.39ECh. 14 - Prob. 14.40ECh. 14 - Prob. 14.41ECh. 14 - Prob. 14.42ECh. 14 - Prob. 14.43ECh. 14 - Determine E for J=20J=21 for HBr assuming it acts...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Prob. 14.47ECh. 14 - Prob. 14.48ECh. 14 - Prob. 14.49ECh. 14 - Prob. 14.50ECh. 14 - Prob. 14.51ECh. 14 - Prob. 14.52ECh. 14 - Prob. 14.53ECh. 14 - Prob. 14.54ECh. 14 - Prob. 14.55ECh. 14 - Prob. 14.56ECh. 14 - Prob. 14.57ECh. 14 - Prob. 14.58ECh. 14 - Prob. 14.59ECh. 14 - Prob. 14.60ECh. 14 - Prob. 14.61ECh. 14 - Prob. 14.62ECh. 14 - Prob. 14.63ECh. 14 - Prob. 14.64ECh. 14 - Prob. 14.65ECh. 14 - Prob. 14.66ECh. 14 - Prob. 14.68ECh. 14 - Prob. 14.69ECh. 14 - Prob. 14.70ECh. 14 - Prob. 14.71ECh. 14 - Prob. 14.72ECh. 14 - Prob. 14.73ECh. 14 - Prob. 14.74ECh. 14 - Prob. 14.75ECh. 14 - Prob. 14.76ECh. 14 - Prob. 14.77ECh. 14 - Prob. 14.78ECh. 14 - Prob. 14.79ECh. 14 - Prob. 14.80ECh. 14 - Prob. 14.81ECh. 14 - Prob. 14.82ECh. 14 - Prob. 14.83ECh. 14 - Prob. 14.84ECh. 14 - Prob. 14.85ECh. 14 - Dioctyl sulfide, (C8H17)2S, and hexadecane,...Ch. 14 - Where would you expect vibrations for ethyl...Ch. 14 - Prob. 14.88ECh. 14 - Prob. 14.89ECh. 14 - Prob. 14.90ECh. 14 - Prob. 14.91ECh. 14 - Prob. 14.92ECh. 14 - Prob. 14.93ECh. 14 - Prob. 14.94ECh. 14 - The mutual exclusion rule states that for certain...Ch. 14 - Prob. 14.96ECh. 14 - Prob. 14.97ECh. 14 - Prob. 14.98ECh. 14 - Prob. 14.99ECh. 14 - Construct and compare the energy level diagrams...Ch. 14 - Prob. 14.101E
Knowledge Booster
Similar questions
- Determine the number of total degrees of freedom and the number of vibrational degrees of freedom for the following species. a Hydrogen sulfide, H2S b Carbonyl sulfide, OCS c The sulfate ion, SO42 d Phosgene, COCl2 e Elemental chlorine, Cl2 f A linear molecule having 20 atoms g A nonlinear molecule having 20 atomsarrow_forwardPure rotational Raman spectra of gaseous C6H6 and C6D6 yield the following rotational constants: ᷉ B(C6H6) = 0.189 60 cm−1, ᷉ B(C6D6) = 0.156 81 cm−1. The moments of inertia of the molecules about any axis perpendicular to the C6 axis were calculated from these data as I(C6H6) = 1.4759 × 10−45 kg m2, I(C6D6) = 1.7845 × 10−45 kgm2. Calculate the CC and CH bond lengths.arrow_forwardWhat is the most highly populated rotational level of Cl2 at (i) 25 °C, (ii) 100 °C? Take ᷉ B = 0.244 cm−1.arrow_forward
- Estimate the centrifugal distortion constant for 1H127I, for which ᷉ B = 6.511 cm−1 and ᷉v = 2308 cm−1. By what factor would the constant change when 2H is substituted for 1H?arrow_forwardIf the wavenumber of the J = 3 ← 2 rotational transition of 1H35Cl, which may be considered as a rigid rotator, is 63.56 cm−1 calculate the moment of inertia and the bond length of the molecule.[Note: m(1H) = 1.0078 u and m(35Cl) = 34.9688 u.]arrow_forwardPredict the shape of the nitronium ion, NO2+, from its Lewis structure and the VSEPR model. It has one Raman active vibrational mode at 1400 cm−1, two strong IR active modes at 2360 and 540 cm−1, and one weak IR mode at 3735 cm−1. Are these data consistent with the predicted shape of the molecule? Assign the vibrational wavenumbers to the modes from which they arise.arrow_forward
- Calculate the frequency of the J = 3 2 transition in the pure rotational spectrum of 12C16O. The equilibrium bond length is 112.81 pm.arrow_forwardThe fundamental vibration frequency of H^35Cl is 2989 cm^-1. What is the value of the liaison force constant? What is the fundamental vibration frequency of D^35Cl.arrow_forwardA diatomic molecule has a rotational constant of 8.0 cm-1, and vibrational frequency of 1200 cm 1. What is the energy of the state with v = 1 and j = 6 relative to the lowest energy state, E = E(v=0,j=0)? 0arrow_forward
- E11C.2(a) Calculate the percentage difference in the fundamental vibrational wavenumbers of "Na Cl and "Na"Cl on the assumption that their force constants are the same. The mass of "Na is 22.9898m..arrow_forwardAssuming a harmonic potential, the fundamental transition for a diatomic molecule is 1603 cm-1. What is the energy, in wavenumber, of the v=3 level of the molecule?arrow_forward(b) The lowest frequency rotational transition of ²H³³C1 occurs at 10.92 cm1. Determine (i) The rotational constant, B, in Hz (ii) The bond lengtharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,