Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 18CQ
Is a heat pump essentially the same thing as a refrigerator? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A heat engine with 100% efficiency is only a theoretical possibility. Explain.
Explain why heat pumps do not work as well in very cold climates as they do in milder ones. Is the same true of refrigerators?
A heat engine running backward is called a refrigerator if its
purpose is to extract heat from a cold reservoir. The same
engine running backward is called a heat pump if its
purpose is to exhaust warm air into the hot reservoir. Heat
pumps are widely used for home heating. You can think of
a heat pump as a refrigerator that is cooling the already
cold outdoors and, with its exhaust heat QH, warming the
indoors. Perhaps this seems a little silly, but consider the
following. Electricity can be directly used to heat a home by
passing an electric current through a heating coil. This is a
direct, 100% conversion of work to heat. That is, 19.0 kW
of electric power (generated by doing work at the rate
19.0 kJ/s at the power plant) produces heat energy inside
the home at a rate of 19.0 kJ/s. Suppose that the
neighbor's home has a heat pump with a coefficient of
performance of 3.00, a realistic value. NOTE: With a
refrigerator, "what you get" is heat removed. But with a
heat pump, "what you…
Chapter 11 Solutions
Physics of Everyday Phenomena
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - In applying the first law of thermodynamics to a...Ch. 11 - Is the total amount of heat released by a heat...Ch. 11 - From the perspective of the first law of...Ch. 11 - Which motor in a hybrid vehiclethe electric or...Ch. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQ
Ch. 11 - Prob. 11CQCh. 11 - Is it possible for the efficiency of a heat engine...Ch. 11 - Can a Carnot engine operate in an irreversible...Ch. 11 - Does a gasoline-burning automobile engine operate...Ch. 11 - Which would have the greater efficiencya Carnot...Ch. 11 - If we want to increase the efficiency of a Carnot...Ch. 11 - Is a heat pump the same thing as a heat engine?...Ch. 11 - Is a heat pump essentially the same thing as a...Ch. 11 - When a heat pump is used to heat a building, where...Ch. 11 - Is it possible to cool a closed room by leaving...Ch. 11 - Prob. 21CQCh. 11 - Prob. 22CQCh. 11 - Prob. 23CQCh. 11 - Prob. 24CQCh. 11 - Which has the higher entropy, a deck of cards in...Ch. 11 - A hot cup of coffee is allowed to cool down, thus...Ch. 11 - When a substance freezes, the molecules become...Ch. 11 - Which would normally have the greater thermal...Ch. 11 - In what ways is a nuclear power plant similar to a...Ch. 11 - What is the distinction between high-grade heat...Ch. 11 - Prob. 31CQCh. 11 - Prob. 32CQCh. 11 - Is an automobile engine a perpetual-motion...Ch. 11 - Prob. 34CQCh. 11 - Prob. 35CQCh. 11 - The water draining from the bottom of the pond...Ch. 11 - Prob. 37CQCh. 11 - In one cycle, a heat engine takes in 1200 J of...Ch. 11 - A heat engine with an efficiency of 28% does 700 J...Ch. 11 - In one cycle, a heat engine takes in 800 J of heat...Ch. 11 - A heat engine with an efficiency of 35% takes in...Ch. 11 - In one cycle, a heat engine does 700 J of work and...Ch. 11 - A Carnot engine takes in heat at a temperature of...Ch. 11 - A Carnot engine takes in heat from a reservoir at...Ch. 11 - A Carnot engine operates between temperatures of...Ch. 11 - A heat pump takes in 450 J of heat from a...Ch. 11 - In each cycle of its operation, a refrigerator...Ch. 11 - A typical electric refrigerator (see fig. 11.9)...Ch. 11 - A typical nuclear power plant delivers heat from...Ch. 11 - An ocean thermal-energy power plant takes in warm...Ch. 11 - An engineer designs a heat engine using flat-plate...Ch. 11 - Suppose that a typical automobile engine operates...Ch. 11 - Prob. 2SPCh. 11 - A Carnot engine operating in reverse as a heat...Ch. 11 - In section 11.3, we showed that a violation of the...Ch. 11 - Suppose that an oil-fired power plant is designed...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forward(a) Ten grams of H2O stats as ice at 0 . The ice absorbs heat from the air (just above 0 ) until all of it melts. Calculate the entropy change of the H2O, of the air, and of the universe. (b) Suppose that the air in part (a) is at 20 rather than 0 and that the ice absorbs heat until it becomes water at 20 . Calculate the entropy change of the H2O, of the air, and of the universe. (c) Is either of these processes reversible?arrow_forwardWhich of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) S 0 (b) S = 0 (c) S 0arrow_forward
- Use a PV diagram such as the one in Figure 22.2 (page 653) to figure out how you could modify an engine to increase the work done.arrow_forwardOf the following, which is not a statement of the second law of thermodynamics? (a) No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely to do work, (b) No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs, (c) When a system undergoes a change in state, the change in the internal energy of the system is the sum of the energy transferred to the system by heat and the work done on the system, (d) The entropy of the Universe increases in all natural processes, (e) Energy will not spontaneously transfer by heat from a cold object to a hot object.arrow_forwardConsider these scenarios and state whether work is done by the system on the environment (SE) or by the environment on the system (ES): (a) opening a carbonated beverage; (b) filling a flat tire; (c) a sealed empty gas can expands on a hot day, bowing out the walls.arrow_forward
- A heat pump has a coefficient of performance of 3.80 and operates with a power consumption of 7.03 103 W. (a) How much energy does it deliver into a home during 8.00 h of continuous operation? (b) How much energy does it extract from the outside air?arrow_forwardA heat pump used for heating shown in Figure P18.25 is essentially an air conditioner installed backward. It extracts energy from colder air outside and deposits it in a warmer room. Suppose the ratio of the actual energy entering the room to the work done by the devices motor is 10.0% of the theoretical maximum ratio. Determine the energy entering the room per joule of work done by the motor given that the inside temperature is 20.0C and the outside temperature is 5.00C. Figure P18.25arrow_forwardGive an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to do work. What happens to the system's entropy in this process?arrow_forward
- This problem compares the energy output and heat transfer to the environment by two different types of nuclear power stationsone with the normal efficiency of 34.0%, and another with an improved efficiency of 40.0%. Suppose both have the same heat transfer into the engine in one day. 2.501014J. (a) How much more electrical energy is produced by the more efficient power station? (b) How much less heat transfer occurs to the environment by the more efficient power station? (One type of more ef?cient nuclear power station, the gas—cooled reactor, has not been reliable enough to be economically feasible in spite of its greater eficiency.)arrow_forwardA refrigerator has 18.0 kJ of work done on it while 115 kJ of energy is transferred from inside its interior. What is its coefficient of performance? (a) 3.40 (b) 2.80 (c) 8.90 (d) 6.40 (e) 5.20arrow_forwardAre the entropy changes of the system in the following processes positive or negative? (a) water vapor that condenses on a cold surface; (b) gas in a that leaks into the surrounding atmosphere; (c) an ice cube that melts in a glass of lukewarm water; (d)the lukewarm water of part (c); a real heat engine performing a cycle; (f) food cooled in a refrigerator.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY