Chemical Principles: The Quest for Insight
7th Edition
ISBN: 9781464183959
Author: Peter Atkins, Loretta Jones, Leroy Laverman
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9D.3BST
Interpretation Introduction
Interpretation:
The molar absorption coefficient
Concept Introduction:
Beer’s lamberts law:
The Beer-Lambert law states that the quantity of light absorbed by a substance dissolved in a fully transmitting solvent is directly proportional to the concentration of the substance and the path length of the light through the solution.
Where A is the absorbance of the solution,
L is the path length of the solution.
c is the concentration of the solution.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The concentration of Fe2+ in a sample is determined by measuring the absorbance of its complex with ferroxine. The sample,
measured in a 1.00 cm cuvette, has an absorbance of 0.254. The reagent blank in the same cuvette has an absorbance of 0.015.
What would be the absorbance reading for each of these two solutions if measured in a 7.00 cm cuvette?
Asample
=
Areagent blank =
At 580 nm, the wavelength of its maximum absorption, the complex Fe(SCN)2+ has a molar absorptivity of 7.00x 103 L cm-1 mol-1. Calculate (a) the absorbance of a 3.40 x 10–5 M solution of the complex at 580 nm in a 1.00-cm cell. (b) the absorbance of a solution in which the concentration of the complex is twice that in (a). (c) the transmittance of the solutions described in (a) and (b). (d) the absorbance of a solution that has half the transmittance of that described in (a).
Auzure II is a dye with a molar absorptivity (ε657) of 8.13×104 L/mol·cm when measured at 657 nm. Calculate the expected absorbance of a 4.50×10–6 M solution of Azure II, when measured in a 2.00 cm spectroscopic cell at 657 nm.
Answer: Expected Absorbance =
Chapter 9 Solutions
Chemical Principles: The Quest for Insight
Ch. 9 - Prob. 9A.1ASTCh. 9 - Prob. 9A.1BSTCh. 9 - Prob. 9A.1ECh. 9 - Prob. 9A.2ECh. 9 - Prob. 9A.3ECh. 9 - Prob. 9A.4ECh. 9 - Prob. 9A.5ECh. 9 - Prob. 9A.6ECh. 9 - Prob. 9A.7ECh. 9 - Prob. 9A.8E
Ch. 9 - Prob. 9A.9ECh. 9 - Prob. 9A.10ECh. 9 - Prob. 9A.11ECh. 9 - Prob. 9A.12ECh. 9 - Prob. 9A.13ECh. 9 - Prob. 9A.14ECh. 9 - Prob. 9B.1ASTCh. 9 - Prob. 9B.1BSTCh. 9 - Prob. 9B.2ASTCh. 9 - Prob. 9B.2BSTCh. 9 - Prob. 9B.1ECh. 9 - Prob. 9B.2ECh. 9 - Prob. 9B.3ECh. 9 - Prob. 9B.4ECh. 9 - Prob. 9B.5ECh. 9 - Prob. 9B.6ECh. 9 - Prob. 9B.7ECh. 9 - Prob. 9B.8ECh. 9 - Prob. 9B.9ECh. 9 - Prob. 9B.10ECh. 9 - Prob. 9B.11ECh. 9 - Prob. 9B.12ECh. 9 - Prob. 9B.13ECh. 9 - Prob. 9B.14ECh. 9 - Prob. 9B.15ECh. 9 - Prob. 9B.16ECh. 9 - Prob. 9C.1ASTCh. 9 - Prob. 9C.1BSTCh. 9 - Prob. 9C.2ASTCh. 9 - Prob. 9C.2BSTCh. 9 - Prob. 9C.3ASTCh. 9 - Prob. 9C.3BSTCh. 9 - Prob. 9C.4ASTCh. 9 - Prob. 9C.4BSTCh. 9 - Prob. 9C.1ECh. 9 - Prob. 9C.2ECh. 9 - Prob. 9C.3ECh. 9 - Prob. 9C.4ECh. 9 - Prob. 9C.5ECh. 9 - Prob. 9C.6ECh. 9 - Prob. 9C.7ECh. 9 - Prob. 9C.8ECh. 9 - Prob. 9C.9ECh. 9 - Prob. 9C.10ECh. 9 - Prob. 9C.11ECh. 9 - Prob. 9C.12ECh. 9 - Prob. 9C.13ECh. 9 - Prob. 9C.14ECh. 9 - Prob. 9C.15ECh. 9 - Prob. 9C.16ECh. 9 - Prob. 9C.17ECh. 9 - Prob. 9C.18ECh. 9 - Prob. 9C.19ECh. 9 - Prob. 9C.20ECh. 9 - Prob. 9D.1ASTCh. 9 - Prob. 9D.1BSTCh. 9 - Prob. 9D.2ASTCh. 9 - Prob. 9D.2BSTCh. 9 - Prob. 9D.3ASTCh. 9 - Prob. 9D.3BSTCh. 9 - Prob. 9D.4ASTCh. 9 - Prob. 9D.4BSTCh. 9 - Prob. 9D.1ECh. 9 - Prob. 9D.2ECh. 9 - Prob. 9D.3ECh. 9 - Prob. 9D.4ECh. 9 - Prob. 9D.5ECh. 9 - Prob. 9D.6ECh. 9 - Prob. 9D.7ECh. 9 - Prob. 9D.8ECh. 9 - Prob. 9D.9ECh. 9 - Prob. 9D.10ECh. 9 - Prob. 9D.11ECh. 9 - Prob. 9D.12ECh. 9 - Prob. 9D.13ECh. 9 - Prob. 9D.14ECh. 9 - Prob. 9D.15ECh. 9 - Prob. 9D.16ECh. 9 - Prob. 9D.17ECh. 9 - Prob. 9D.18ECh. 9 - Prob. 9D.19ECh. 9 - Prob. 9D.20ECh. 9 - Prob. 9D.21ECh. 9 - Prob. 9D.22ECh. 9 - Prob. 9D.23ECh. 9 - Prob. 9D.24ECh. 9 - Prob. 9D.25ECh. 9 - Prob. 9D.26ECh. 9 - Prob. 9D.27ECh. 9 - Prob. 9D.28ECh. 9 - Prob. 9D.29ECh. 9 - Prob. 9D.30ECh. 9 - Prob. 9D.31ECh. 9 - Prob. 9D.32ECh. 9 - Prob. 9D.33ECh. 9 - Prob. 9D.34ECh. 9 - Prob. 9.1ECh. 9 - Prob. 9.2ECh. 9 - Prob. 9.3ECh. 9 - Prob. 9.4ECh. 9 - Prob. 9.5ECh. 9 - Prob. 9.6ECh. 9 - Prob. 9.7ECh. 9 - Prob. 9.8ECh. 9 - Prob. 9.9ECh. 9 - Prob. 9.10ECh. 9 - Prob. 9.11ECh. 9 - Prob. 9.12ECh. 9 - Prob. 9.13ECh. 9 - Prob. 9.14ECh. 9 - Prob. 9.15ECh. 9 - Prob. 9.16ECh. 9 - Prob. 9.17ECh. 9 - Prob. 9.18ECh. 9 - Prob. 9.19ECh. 9 - Prob. 9.20ECh. 9 - Prob. 9.21ECh. 9 - Prob. 9.23ECh. 9 - Prob. 9.25E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- At 580 nm, the wavelength of its maximum absorption, the complex Fe(SCN)2+ has a molar absorptivity of 7.00 X 103 L mol-1 cm-1. Calculate (a) the absorbance of a 2.50 X 10-5 M solution of the complex at 580 nm in a 1.00-cm cell. (b) the absorbance of the solution in which the concentration of the complex is twice that in part (a) (c) the transmittance of the solutions described in parts (a) and (b) (d) the absorbance of a solution that has half the transmittance of that described in part (a) answer letter d pleasearrow_forwardAt 580 nm, the wavelength of its maximum absorption, the complex Fe(SCN)2+ has a molar absorptivity of 7.00 X 103 L mol-1 cm-1. Calculate (a) the absorbance of a 2.50 X 10-5 M solution of the complex at 580 nm in a 1.00-cm cell. (b) the absorbance of the solution in which the concentration of the complex is twice that in part (a) (c) the transmittance of the solutions described in parts (a) and (b) (d) the absorbance of a solution that has half the transmittance of that described in part (a)arrow_forward7. A solution containing the complex formed between Bi(III) and thiourea has a molar absorptivity of 9.32 x 10° L·cm-1-mol-1 at 470 nm. (a) What is the absorbance of a 6.24 x 10-5 M solution of the complex in a 1.00-cm cell? (b) What is the percent transmittance of the solution described in Part (a)? (c) What is the molarity of the complex in a solution that has the same absorbance as the solution in Part (a), but was measured in a 5.00-cm cell?arrow_forward
- A 2.5 x 10 M solution of a colored complex in a 1.00 - cm cell has an absorbance of 0.300. What is its molar absorptivity in L/(mol.cm)? Select one: O3.0 x 103 O 8.3 x 103 O 3.0 x 104arrow_forwardWrite the formula for the salt formed when three oxalate ions complex with Co(II), assuming that the charge-balancing cation is Na+.arrow_forward2arrow_forward
- Because of the toxicity of mercury compounds, mercury(I)chloride is used in antibacterial salves. The mercury(I) ion(Hg₂²⁺) consists of two bound Hg⁺ ions.(a) What is the empirical formula of mercury(I) chloride?(b) Calculate [Hg₂²⁺] in a saturated solution of mercury(I) chlo-ride (Ksp=1.5X10⁻¹⁸).(c) A seawater sample contains 0.20 lb of NaCl per gallon. Find[Hg₂²⁺] if the seawater is saturated with mercury(I) chloride.(d) How many grams of mercury(I) chloride are needed to satu-rate 4900 km³ of pure water (the volume of Lake Michigan)?(e) How many grams of mercury(I) chloride are needed to satu-rate 4900 km³ of seawater?arrow_forwardA 20 ml aliquot of drinking water containing Fe(II) and Fe (III) is treated with hydroquinone to reduce all dissolved iron to Fe(II),0- phenanthroline is added and the aliquot is diluted to 50 ml and the absorbance in a 2.00 cm cell is 0.085 at 510 nm. Calculate the iron content of the water as ppm? ε = 1.11 x 104 L/mol cmarrow_forward6. Tron(11) ion salts, such as FeSO, 7H,O, react with the organic compound ortho-phenanthroline (phen) to form red coordination compounds with formulas such as Fe(phen),SO4. Such compounds have an analytical wavelength of 510 nm. (1) A standard solution containing Fe(phen),SO, was made by dissolving 0.0139 g of FeSO4 · H20, with a molar mass of 278.05 g mol-1 in 500.0 mL of water containing excess phen. The solution has a %T of 36.5% at 510 nm. A 500.0-mL solution with unknown Fe(phen),,SO4 concentration has a %T of 64.3% at 510 nm. What is the molar concentration of Fe(phen),SO4 in the unknown solution?arrow_forward
- Assign reasons for the following :(i) Transition metals and many of their compounds act as good catalysts.(ii) Transition metals generally form coloured compounds.arrow_forwardA 20 ml aliquot of drinking water containing Fe(II) and Fe (III) is treated with hydroquinone to reduce all dissolved iron to Fe(II),0- phenanthroline is added and the aliquot is diluted to 50 ml and the absorbance in a 2.00 cm cell is 0.085 at 510 nm. Calculate the iron content of the water as ppm? ε = 1.11 x104 L/mol cmarrow_forwardA solution containing 4000 ug Fe(III) per cubic decimeter is treated with sulfosalicylic acid to form a colored complex. Its absorbance at a given wavelength in a 0.5 cm cell is measured to be 0.68. Calculate the molar absorptivity of the complex.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY