Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 67P
An axial-flow pump is required to deliver 0.75 m3/s of water at a head of 15 J/kg. The diameter of the rotor is 0.25 m, and it is to be driven at 500 rpm. The prototype is to be modeled on a small test apparatus having a 2.25 kW, 1000 rpm power supply. For similar performance between the prototype and the model, calculate the head, volume flow rate, and diameter of the model.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A certain fan delivers 340 m3/min of air at a static pressure of 25.4 mm of water gagewhen operating at a speed of 400 rpm and requires an input of 3 kW. If in the sameinstallation 425 m/min of air are desired, what will be the new static pressure in termsof mm of water and fan power required?
A quarter scale turbine model is tested under a head of 36 m. The full
scale turbine is required to work under o head of 100 m and to run at 428
rpm. At what speed must the model be run and if it develops 135 HP and
uses 0'324 m3/ sec of water at this speed, what power will be obtained
from the full scale turbine assuming that its efficiency is 3 per cent better
than that of the model?
A prototype pump is designed to so that the attached dimensionless performance curves apply. (a) If the
pump is powered by a fixed speed motor delivering a rotational speed of 400 rpm and the impeller diameter
is 2 m find the unknown quantities (Q, H, P,n ). Assume the pump is operating a peak efficiency and is
pumping cold water. (b) If the pump is to be connected to standard steel pipe, which pipe should be used.
Сн
1.00
Efficiency-n
0.75
CH 3
0.50
0.25
0.04
0.08
0.12
0.16
Ce
C, and Efficiency
Chapter 7 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 7 - The slope of the free surface of a steady wave in...Ch. 7 - One-dimensional unsteady flow in a thin liquid...Ch. 7 - In atmospheric studies the motion of the earths...Ch. 7 - Fluid fills the space between two parallel plates....Ch. 7 - By using order of magnitude analysis, the...Ch. 7 - Consider a disk of radius R rotating in an...Ch. 7 - An unsteady, two-dimensional, compressible,...Ch. 7 - Experiments show that the pressure drop for flow...Ch. 7 - At very low speeds, the drag on an object is...Ch. 7 - We saw in Chapter 3 that the buoyant force, FB, on...
Ch. 7 - Assume that the velocity acquired by a body...Ch. 7 - Derive by dimensional analysis an expression for...Ch. 7 - The speed of shallow water waves in the ocean...Ch. 7 - The speed, V, of a free-surface wave in shallow...Ch. 7 - The boundary-layer thickness, , on a smooth flat...Ch. 7 - The speed, V, of a free-surface gravity wave in...Ch. 7 - Derive an expression for the velocity of very...Ch. 7 - Derive an expression for the axial thrust exerted...Ch. 7 - Derive an expression for drag force on a smooth...Ch. 7 - The energy released during an explosion, E, is a...Ch. 7 - Measurements of the liquid height upstream from an...Ch. 7 - The load-carrying capacity, W, of a journal...Ch. 7 - Derive an expression for the drag force on a...Ch. 7 - A circular disk of diameter d and of negligible...Ch. 7 - Two cylinders are concentric, the outer one fixed...Ch. 7 - The time, t, for oil to drain out of a viscosity...Ch. 7 - You are asked to find a set of dimensionless...Ch. 7 - A continuous belt moving vertically through a bath...Ch. 7 - Derive an expression for the frictional torque...Ch. 7 - Tests on the established flow of six different...Ch. 7 - The power, P, required to drive a fan is believed...Ch. 7 - The sketch shows an air jet discharging...Ch. 7 - The diameter, d, of bubbles produced by a...Ch. 7 - Choked-flow nozzles are often used to meter the...Ch. 7 - A large tank of liquid under pressure is drained...Ch. 7 - Spin plays an important role in the flight...Ch. 7 - The power loss, P, in a journal bearing depends on...Ch. 7 - The thrust of a marine propeller is to be measured...Ch. 7 - The rate dT/dt at which the temperature T at the...Ch. 7 - When a valve is closed suddenly in a pipe with...Ch. 7 - An airship is to operate at 20 m/s in air at...Ch. 7 - An airplane wing of 3 m chord length moves through...Ch. 7 - A flat plate 1.5 m long and 0.3 m wide is towed at...Ch. 7 - This 1:12 pump model using water at 15C simulates...Ch. 7 - An ocean-going vessel is to be powered by a...Ch. 7 - On a cruise ship, passengers complain about the...Ch. 7 - A 1:3 scale model of a torpedo is tested in a wind...Ch. 7 - A flow rate of 0:18 m3/s of water at 20C...Ch. 7 - A force of 9 N is required to tow a 1:50 ship...Ch. 7 - An airplane wing, with chord length of 1.5 m and...Ch. 7 - A water pump with impeller diameter of 24 in. is...Ch. 7 - A model hydrofoil is to be tested at 1:20 scale....Ch. 7 - A ship 120 m long moves through freshwater at 15C...Ch. 7 - A 1:30 scale model of a cavitating overflow...Ch. 7 - In some speed ranges, vortices are shed from the...Ch. 7 - A 1:8 scale model of a tractor-trailer rig is...Ch. 7 - On a cruise ship, passengers complain about the...Ch. 7 - When a sphere of 0.25 mm diameter and specific...Ch. 7 - The flow about a 150 mm artillery projectile which...Ch. 7 - Your favorite professor likes mountain climbing,...Ch. 7 - A 1:50-scale model of a submarine is to be tested...Ch. 7 - Consider water flow around a circular cylinder, of...Ch. 7 - A 1:10 scale model of a tractor-trailer rig is...Ch. 7 - The power, P, required to drive a fan is assumed...Ch. 7 - Over a certain range of air speeds, V, the lift,...Ch. 7 - The pressure rise, p, of a liquid flowing steadily...Ch. 7 - An axial-flow pump is required to deliver 0.75...Ch. 7 - A model propeller 1 m in diameter is tested in a...Ch. 7 - Consider Problem 7.38. Experience shows that for...Ch. 7 - Closed-circuit wind tunnels can produce higher...Ch. 7 - A 1:16 model of a bus is tested in a wind tunnel...Ch. 7 - The propagation speed of small-amplitude surface...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
If p is an iterator for a vector object v, what is p?
Problem Solving with C++ (10th Edition)
In the text, JUMP instructions were expressed by identifying the destination explicitly by stating the name (or...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Explain the meaning of the term object persistence.
Database Concepts (8th Edition)
Describe a method that can be used to gather a piece of data such as the users age.
Web Development and Design Foundations with HTML5 (8th Edition)
If a class is named Student, what name can you use for a constructor for this class?
Java: An Introduction to Problem Solving and Programming (8th Edition)
This string method returns a copy of the string with all leading and trailing whitespace characters removed. a....
Starting Out with Python (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A model of hydraulic turbine, to scale of 1/5 is tested under a head of 7.5m. The prototype works under a head of 180 m and is to run at 500 rpm. At what speed should the model be operated?arrow_forward3. Describe, with the aid of sketches, the relationship between geometry and specific speed for pumps. a. A model centrifugal pump with an impeller diameter of 20 cm is designed to rotate at 1450 rpm and to deliver 20 dm3/s of fresh water against a pressure of 150 kPa. Determine the specific speed and diameter of the pump. How much power is needed to drive the pump if its efficiency is 82%? b. A prototype pump with an impeller diameter of 0.8 m is to be tested at 725 rpm under dynamically similar conditions as the model. Determine the head of water the pump must overcome, the volume flow rate, and the power needed to drive the pumparrow_forwardHydrodynamics pumps 5. A centrifugal pump has r1 = 6 in., r2 = 12 in., b1 = 3 in., b2 = 2 in., β1 = 20°, β2 = 10° and rotates at 1200 rev/min. If the fluid is water at 60°F, estimate the theoretical (a) flow rate, in gpm; (b) the head in ft; and ( c) the water horsepower, HP. Assume near-radial entry flow. a. flow rate Answer : ____________________ gpmb. head Answer : ____________________ ftc. water horsepower Answer : ____________________ HParrow_forward
- A single stage centrifugal pump has an impeller of 250 mm diameter which rotates at 1,800 rpm and lifts 60 lit/sec to 25 m with an efficiency of 70%. Obtain the number of stages and diameter of each impeller of a similar multi-stage pump to lift 75 lit/sec to 175 m at 1,500 rpm. (8 stages ; 280 mm dia)arrow_forwardPumps: A centrifugal pump having 4 stages in parallel, delivers 18 kiloliters/min of liquid against a head of 25 m. The diameter of the impellers being 24 cm and the speed of 1800 rpm. A pump is to be made up with a number of stages in series of similar construction to that of the first pump to run at 1250 rpm and to deliver 15 kiloliters/min against a totalhead of 250 m. Find the diameter of the impellers and the number of stages required in this case. Answer: D = 46.63 cm, n = 6 stagesarrow_forward### Based on the study of pressure losses in pumps and pipelines: Q122. Find the catalogued model of a suitable centrifugal pump for the following parameters: Upsetting height of 1570 mwc Suction height of 108 mwc Power 447 hparrow_forward
- A small model of a water pump with an impeller diameter of 8 in is able to develop a head of 15 ft and flow of 100 GPM when spun at 1200 RPM with a power input of 0.4 hp. If a larger model of the same pump with an impeller diameter of 24 in is to be used for another application where the required head is 80ft, at what speed (in RPM) should this larger model be ran, and at what capacity (in GPM) can it deliver water?arrow_forwardP (6-5) Two centrifugal pumps are connected in parallel in a given pumping system. Plot total head Ah against capacity Q pump and system curves for both pumps running on the basis of the following data: Operating data for pump 1 Operating data for pump 2 Ahm, 40.0 35.0 30.0 25.0 Ah m. 0.0 35 30 25 Qim³/h. 169 209 239 265 Q₂m/h 0 136 203 267 data for system Ah m, 20.0 25.0 30.0 35.0 Q.m³/h, 0 244 372 470arrow_forwardA one-fifth scale model of a water turbine is tested in a laboratory at T = 20°C. The diameter of the model is 8.0 cm, its volume flow rate is 17.0 m3 /h, it spins at 1500 rpm, and it operates with a net head of 15.0 m. At its best efficiency point, it delivers 450 W of shaft power. Calculate the efficiency of the model turbine. What is the most likely kind of turbine being tested?arrow_forward
- Figure below shows the performance curve family of Model 5009 Centrifugal pumps of Taco Pump Inc., running at a fixed speed of N = 1160 rpm. For the pump with the impeller diameter D = 8.625 in., you are asked to determine the best efficiency point (BEP) of the given pump. What is the pump efficiency at BEP? HEAD IN FEET 50 0 0 0 0 40 20 10 O 81% 8.625" 30 (219mm). O 51% O 71% ○ 61% O Taco L/SEC 5 9.25" (235mm) 8.00" (203mm) 7.375" (187mm) 6.75" (171mm) 0 10 15 125 Model 5009 FI & CI Series 20 25 CURVES BASED ON CLEAR WATER WITH SPECIFIC GRAVITY OF 1.0 8 8 52 75% 77% 30 79% 1160 RPM FEBRUARY 19. 2002 35 40 45 REQUIRED NPSH olº 1.5HP (1.1KW) dot 17% Curve no. 2140 Min. Imp. Dia. 6.75" Size 6 x 5 x 9.0 50 55 60 75% 72% 250 375 500 625 FLOW IN GALLONS PER MINUTE 8% 2HP(1.5KW) 750 %09. 55% (2.2KW) 3HP 7.5HP(5.6KW) 2015 do 35% 875 FEET 15 12 -9 6 SHP(3.7KW) 3 0 10 8 NPSH 1000 HEAD IN METERS 5 KPo 45 -36 27 18 9 -0 100 -80 60 -40 2 -20 8 HEAD IN KILOPASCALSarrow_forwardA centrifugal pump delivers 227 m³/hr of water from a source 4 meters below the pump centre line to a pressure tank whose pressure is 2.8 kg/cm² . Friction loss estimates are 2 meters in the suction line and 1 metre in the discharge line. The diameter of the suction pipe is 250 mm and the discharge pipe is 200 mm. Find: a. The water horsepower b. The kW rating of the driving motor if the pump efficiency is 70%arrow_forwardAn artery reduces in area from 0.00034 m2 at its inlet to 0.00022 m2 at its outlet. Blood enters the artery at velocity 0.15 m/s and pressure 15,000 Pa. Blood leaves the artery at a pressure 10,000 Pa. Assuming that the artery may be modelled as a straight, circular tube and neglecting gravity what is the force exerted on the artery by the fluid. The density of blood is 1050 kg/m3. Give your answer in Newtons.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license