When a valve is closed suddenly in a pipe with flowing water, a water hammer pressure wave is set up. The very high pressures generated by such waves can damage the pipe. The maximum pressure, pmax, generated by water hammer is a function of liquid density, ρ, initial flow speed, U0, and liquid bulk modulus, Eυ. How many dimensionless groups are needed to characterize water hammer? Determine the functional relationship among the variables in terms of the necessary Π groups.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Additional Engineering Textbook Solutions
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Database Concepts (8th Edition)
Management Information Systems: Managing The Digital Firm (16th Edition)
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Starting Out with C++ from Control Structures to Objects (9th Edition)
- The differential equation for small-amplitude vibrations y(r, f) of a simple beam is given by a*y + E = 0 ax pA where p = beam material density A = cross-sectional area I= area moment of inertia E = Young's modulus Use only the quantities p, E, and A to nondimensionalize y, x, and t, and rewrite the differential equation in dimensionless form. Do any parameters remain? Could they be removed by further manipulation of the variables?arrow_forwardTask 1 (d) The force, F, of a turbine generator is a function of density p, area A and velocity v. By assuming F = apª A® vc and dimensional homogeneity, find a, b and c and express F in terms of p, A and v. (a, a, b and c are real numbers). Make the following assumptions to determine the dimensionless parameter: F = 1k N if the scalar values of pAv= 1milli. (e) The dynamic coefficient of viscosity µ (viscosity of a fluid) is found from the formula: µAv F = Fis the force exerted on the liquid, A is the cross sectional area of the path, v is the fluid velocity and l is the distance travelled by the fluid. Using dimensional analysis techniques, determine the equation that governs µ and its dimensions using the results of (b) and the equation in c, clearly showing all steps in the dimensional analysis.arrow_forwardThe velocity V of propagation of ripples on the surface of a shallow liquid depends on the gravitational acceleration g and the liquid depth h. If Buckingham's Theorem is used to identify the salient dimensionless group(s), how many dimensionless group(s) will be obtained? Number of dimensionless group(s) = 1. {1} (Enter your answer as a number.)arrow_forward
- I need help correcting this problem (incorrect attempts are attached). Please step-by-step.arrow_forwardPravinbhaiarrow_forwardQ1: If an air stream flowing at velocity (U) pasta body of length (L) causes a drag force (F) on the body which depends only upon U, L, and fluid viscosity μ. Formulate the suitable dimensionless parameter of the air drag force.arrow_forward
- Please solve this problem, Thank you very much! Figure is attached 1. liquids in rotating cylinders rotates as a rigid body and considered at rest. The elevation difference h between the center of the liquid surface and the rim of the liquid surface is a function of angular velocity ?, fluid density ?, gravitational acceleration ?, and radius ?. Use the method of repeating variables to find a dimensionless relationship between the parameters. Show all the steps.arrow_forwardCH, CQ and n are functions of CP. Draw the dimensionless performance curves of the turbine on a single graph by makingthe necessary scalings. (Fit the curve by using the excel program for drawing. Also give the values you used for plotting inthe table) ÖN=5arrow_forwardThe true optionarrow_forward
- Hi asapppparrow_forwardI need help with C and D. I want to see detailed steps.arrow_forwardQuestion 3 The power, P, to drive an axial pump is in a function of density of fluid, p, volumetric flow rate, Q, pump head, h, diameter of rotor, D, and angular speed of rotor, N. (a) (b) (c) P PDS N3 Verify that - is a dimensionless group. Determine the remaining pi group and perform dimensional analysis. Define geometric similarity and dynamic similarity. Categorize the pi group obtained from part (b) as geometric similarity or dynamic similarity, respectively.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning