Materials Science And Engineering Properties
Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 14ETSQ
To determine

The material of TiNi if it is deformed 5% at a temperature above the martensite start temperature and then strain is fully recovered upon reduction of stress to 0.

Blurred answer
Students have asked these similar questions
An aluminum alloy [E = 67 GPa; ν = 0.33; α = 23.0 × 10–6/°C] plate is subjected to a tensile load P. The plate has a depth of d = 225 mm, a cross-sectional area of A = 5100 mm2, and a length of L = 4.1 m.  The initial longitudinal normal strain in the plate is zero. After load P is applied and the temperature of the plate has been increased by ΔT = 63°C, the longitudinal normal strain in the plate is found to be 2900 με.  Determine: (a) the magnitude of load P. (b) the change in plate depth Δd.
5) A single zinc crystal is loaded in tension with the normal to its slip plane at 60° to the tensile axis and the slip direction at 40° to the tensile axis. a) Calculate the resolved shear stress when a tensile stress of 0.69 MPa is applied. b) What tensile stress is necessary to reach the critical resolved shear stress of 0.94 MPa?
1.4-7 The data shown in the table below were obtained from a tensile test of high-strength steel. The test specimen had a diameter of 13 mm and a gage length of 50 mm (see figure for Prob. 1.4-3). At fracture, the elongation between the gage marks was 3.0 mm and the minimum diameter was 10.7 mm. Plot the conventional stress-strain curve for the steefor the steel and determine the proportional limit, modulus of elastics of elastic- ity (i.e., the slope of the initial part of the stress-strain,tress-strain curve), yield stress at 0.1% offset, ultimate stress, percent, elongation in 50 mm, and percent reduction in area. 'ess, percent area. TENSILE-TEST DATA FOR PROB. 1.4-7 Elongation (mm) 0.005 0.015 0.048 Load (kN) 5 10 30 50 0.084 60 0.099 64.5 0.109 67.0 0.119 68.0 0.137 69.0 0.160 70.0 0.229 72.0 0.259 76.0 0.330 84.0 0.584 92.0 0.853 100.0 1.288 112.0 2.814 113.0 Fracture

Chapter 6 Solutions

Materials Science And Engineering Properties

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY