Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 7Q
To determine
The wavelength of wave.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A) Suppose a star is 4.15 ✕ 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth?
B) The Sun is 1.50 ✕ 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth?
C) The Moon is 3.84 ✕ 108 m from Earth. How long (in s) does it take for a radio transmission to travel from Earth to the Moon and back?
The AM radio band in a particular area has a frequency range of 554 kHz to 1620 kHz. How long is the wavelength of the radiation
at the beginning of the range and how long is the wavelength of the radiation at the end of the range? Answer in units of m.
What is the wavelength (in m) of a radio signal with a frequency of 98.3 MHz?
Enter the numerical part of your answer to three decimal figures.
The speed of light in a vacuum (and in normal air) = Vlight = c = 3.00 × 108 m/s.
Your Answer:
Chapter 5 Solutions
Universe: Stars And Galaxies
Ch. 5 - Prob. 1QCh. 5 - Prob. 2QCh. 5 - Prob. 3QCh. 5 - Prob. 4QCh. 5 - Prob. 5QCh. 5 - Prob. 6QCh. 5 - Prob. 7QCh. 5 - Prob. 8QCh. 5 - Prob. 9QCh. 5 - Prob. 10Q
Ch. 5 - Prob. 11QCh. 5 - Prob. 12QCh. 5 - Prob. 13QCh. 5 - Prob. 14QCh. 5 - Prob. 15QCh. 5 - Prob. 16QCh. 5 - Prob. 17QCh. 5 - Prob. 18QCh. 5 - Prob. 19QCh. 5 - Prob. 20QCh. 5 - Prob. 21QCh. 5 - Prob. 22QCh. 5 - Prob. 23QCh. 5 - Prob. 24QCh. 5 - Prob. 25QCh. 5 - Prob. 26QCh. 5 - Prob. 27QCh. 5 - Prob. 28QCh. 5 - Prob. 29QCh. 5 - Prob. 30QCh. 5 - Prob. 31QCh. 5 - Prob. 32QCh. 5 - Prob. 33QCh. 5 - Prob. 34QCh. 5 - Prob. 35QCh. 5 - Prob. 36QCh. 5 - Prob. 37QCh. 5 - Prob. 38QCh. 5 - Prob. 39QCh. 5 - Prob. 40QCh. 5 - Prob. 41QCh. 5 - Prob. 42QCh. 5 - Prob. 43QCh. 5 - Prob. 44QCh. 5 - Prob. 45QCh. 5 - Prob. 46QCh. 5 - Prob. 47QCh. 5 - Prob. 48QCh. 5 - Prob. 49QCh. 5 - Prob. 50QCh. 5 - Prob. 51Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The frequency range for AM radio is 540 to 1600 kHz. The frequency range for FM radio is 88.0 to 108 MHz. Part (a) Caculate the maximum AND minimum wavelength for AM radio in meters. Part (b) Caculate the maximum AND minimum wavelength for FM radio in meters.arrow_forward(a) Suppose a star is 7.61 ✕ 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth? years (b) The Sun is 1.50 ✕ 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth? minutes (c) The Moon is 3.84 ✕ 108 m from Earth. How long (in s) does it take for a radio transmission to travel from Earth to the Moon and back? sarrow_forwardInfrared radiation from young stars can pass through the heavy dust clouds surrounding them, allowing astronomers here on Earth to study the earliest stages of star formation, before a star begins to emit visible light. Suppose an infrared telescope is tuned to detect infrared radiation with a frequency of 3.30 THz. Calculate the wavelength of the infrared radiation. Be sure your answer has the correct number of significant digits.arrow_forward
- A truck driver is broadcasting at a frequency of 24.865 MHz with a CB (citizen’s band) radio. Determine the wavelength of the electromagnetic wave being used. Use 2.9979 × 108 m/s as the speed of light, and give your answer to five significant figures.arrow_forwardYour 5G phone is sending an RF signal at a wavelength of 5.72 mm. What frequency is the wave (in gigahertz = 1E9 Hz)?arrow_forward(a) Suppose a star is 8.59 x 1018 m from Earth. Imagine a pulse of radio waves is emitted toward Earth from the surface of this star. How long (in years) would it take to reach Earth? years (b) The Sun is 1.50 x 1011 m from Earth. How long (in minutes) does it take sunlight to reach Earth? minutes (c) The Moon is 3.84 x 108 m from Earth. How long (in s) does it take for a high-intensity laser beam to travel from Earth to the Moon and back?arrow_forward
- A pulsar is a type of rotating neutron star that emits a beam of electromagnetic radiation. Imagine a pulsar that is moving toward Earth at a speed of 875.500 km/s. It emits mostly radio waves with a wavelength (at the source) of 124.000 cm. What is the observed wavelength of this radiation on Earth? (Assume the Earth is stationary. Consider the speed of light c = 3.00000 108 m/s. Give your answer to at least six significant figures.)______________ cmarrow_forwardThe speed of all empty space is 3.00 × 108 m/s. electromagnetic waves in a) What is the wavelength of radio waves emitted at 98.9 MHz? Answer in units of m. b) What is the wavelength of visible light emitted at 5.9 × 108 MHz? Answer in units of m. c) What is the wavelength of X rays emitted at 3.1 x 10¹2 MHz? Answer in units of m.arrow_forwardConsider electromagnetic waves in free space. What is the wavelength of a wave that has the following frequencies? (a) 4.20 ✕ 1011 Hz m(b) 6.76 ✕ 1016 Hz marrow_forward
- A certain "band" of the electromagnetic spectrum spans the range of wavelengths from 144 um to 427 um. What is the highest frequency wave in this band? Give your answer in terahertz (1.00 tHz = 1.00x1012 Hz).arrow_forwardConsider electromagnetic waves in free space. What is the wavelength of a wave that has the following frequencies? (a) 4.24 x 10¹¹ Hz (b) m 8.28 x 10¹6 Hz marrow_forwardProblem 14: Part (a) Express the wavelength of the wave, λ, in terms of f and the speed of light, c. λ = ______ Part (b) Calculate the wavelength, λ, in meters. λ = ______arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY