Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 3E
Is your textbook the kind of idealized object (described in section on
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question #1
a) Plot the energy spectral density p(2) of black-body radiation at T=3000 K and at 7= 5000 K.
(These correspond to the apparent temperatures of "warm white" and "cool white" light bulbs.)
(Note: Show both curves on a single graph, using a standard plotting software. Report the wave-
length in nanometers.)
b) For each of these two temperatures, at which wavelength is the radiation intensity maximum?
(Note: Report the wavelengths in nanometers. Your answers should be consistent with the curves
from part a), of course.)
The maximum intensity of radiation emitted by a star occurs at a surface temperature of 4.3 x
104 K.
a) Calculate the wavelength of the emitted radiation when the intensity is maximum.
b) Calculate the ratio of the intensity radiated at a wavelength of 60.0 nm to the maximum
intensity.
Assume that the star radiates like an ideal blackbody.
you are sitting at a desk in a completely dark room. the room is at normal indoor room temperature. there is an inanimate and un-powered object on your desk (e.g., a box, pencil case, notebook,...). what wavelength of blackbody radiation is emitted from that object with greatest intensity? (assume the object has the same temperature as the rest of the room.) express your answer in microns.
Chapter 5 Solutions
Astronomy
Ch. 5 - What distinguishes one type of electromagnetic...Ch. 5 - What is a wave? Use the terms wavelength and...Ch. 5 - Is your textbook the kind of idealized object...Ch. 5 - Where in an atom would you expect to find...Ch. 5 - Explain how emission lines and absorption lines...Ch. 5 - Explain how the Doppler effect works for sound...Ch. 5 - What kind of motion for a star does not produce a...Ch. 5 - Describe how Bohr’s model used the work of...Ch. 5 - Explain why light is referred to as...Ch. 5 - Explain the difference between radiation as it is...
Ch. 5 - What are the differences between light waves and...Ch. 5 - Which type of wave has a longer wavelength: AM...Ch. 5 - Explain why astronomers long ago believed that...Ch. 5 - Explain what the ionosphere is and how it...Ch. 5 - Which is more dangerous to living things, gamma...Ch. 5 - Explain why we have to observe stars and other...Ch. 5 - Explain why hotter objects tend to radiate more...Ch. 5 - Explain how we can deduce the temperature of a...Ch. 5 - Explain what dispersion is and how astronomers use...Ch. 5 - Explain why glass prisms disperse light.Ch. 5 - Explain what Joseph Fraunhofer discovered about...Ch. 5 - Explain how we use spectral absorption and...Ch. 5 - Explain the results of Rutherford’s gold foil...Ch. 5 - Is it possible for two different atoms of carbon...Ch. 5 - What are the three isotopes of hydrogen, and how...Ch. 5 - Explain how electrons use light energy to move...Ch. 5 - Explain why astronomers use the term “blueshifted”...Ch. 5 - If spectral line wavelengths are changing for...Ch. 5 - Make a list of some of the many practical...Ch. 5 - With what type of electromagnetic radiation would...Ch. 5 - Why is it dangerous to be exposed to X-rays but...Ch. 5 - Go outside on a clear night, wait 15 minutes for...Ch. 5 - Water faucets are often labeled with a red dot for...Ch. 5 - Suppose you are standing at the exact center of a...Ch. 5 - How could you measure Earth’s orbital speed by...Ch. 5 - Astronomers want to make maps of the sky showing...Ch. 5 - The greenhouse effect can be explained easily if...Ch. 5 - An idealized radiating object does not reflect or...Ch. 5 - Why are ionized gases typically only found in very...Ch. 5 - Explain why each element has a unique spectrum of...Ch. 5 - What is the wavelength of the carrier wave of a...Ch. 5 - What is the frequency of a red laser beam, with a...Ch. 5 - You go to a dance club to forget how hard your...Ch. 5 - What is the energy of the photon with the...Ch. 5 - If the emitted infrared radiation from Pluto, has...Ch. 5 - What is the temperature of a star whose maximum...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What global policy changes and what individual choices can help us sustain the planet that sustains us?
Biology: Life on Earth with Physiology (11th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
Thiols such as ethanethiol and propanethiol can be used to reduce vitamin K epoxide to vitamin KH2, but they re...
Organic Chemistry (8th Edition)
EVOLUTION CONNECTION The percentages of naturally occurring elements making up the human body (see Table 2.1) a...
Campbell Biology (11th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
20. For each pedigree shown,
a. Identify which simple pattern of hereditary trans-mission (autosomal dominant,...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A large cavity that has a very small hole and is maintained at a temperature T is a good approximation to an ideal radiator or blackbody. Radiation can pass into or out of the cavity only through the hole. The cavity is a perfect absorber, since any radiation incident on the hole becomes trapped inside the cavity. Such a cavity at 500 .C has a hole with area 5.00 mm?. How long does it take for the cavity to radiate 300 J of energy through the hole?arrow_forwardQuestion A7 The intensity of the emitted radiation by a star is at a maximum at a wavelength of 78.9 nm. a) Calculate the surface temperature of the star. b) Calculate the ratio of the intensity radiated at 65.0 nm to the maximum intensity. Assume that the star radiates like an ideal blackbody.arrow_forwardAarrow_forward
- The intensity of blackbody radiation peaks at a wavelength of 583 nm. (a) What is the temperature (in K) of the radiation source? (Give your answer to at least 3 significant figures.) K (b) Determine the power radiated per unit area (in W/m2) of the radiation source at this temperature. Review Stefan's law. What is the emissivity of a blackbody? W/m2arrow_forwardSuppose a hot object radiates with the twice the intensity as the sun on earth, i.e. 2600W/m2. What is the energy density of this radiation?arrow_forwardConsider an experiment where a Blackbody (Blackbody radiation) is studied. The radiators are heated up by absorbing incident light and cool down when they emit light, reaching a specific temperature at equilibrium. Assume for all parts that the equilibrium temperature of the Blackbody radiator is 8000K. a) How much energy is emitted per second by the blackbody (i.e., what is the power it emits)? What is the nature of emitted energy (hint: the answer is more precise than just saying “heat”)? b) What is the intensity distribution at a frequency of 230x10^12 Hz? Calculate this both for Rayleigh-Jeans and Planck form of the distribution. c) Is a larger fraction of the energy emitted at a frequency of 230x10^12 Hz for the Rayleigh- Jeans or Planck distribution? Briefly explain why. d) We will now consider “graybody” radiation, where the graybody object reflects 5% of the light (i.e., it does not absorb all the light incident on it). However, since the absorptivity and emissivity are…arrow_forward
- The emissivity of the human skin is 97.0 percent. Use 35.0 °C for the skin temperature and approximate the human body by a rectangular block with a height of 1.76 m, a width of 43.5 cm and a length of 22.0 cm. Calculate the power emitted by the human body. 2301 J units. No What is the wavelength of the peak in the spectral distribution for this temperature? Fortunately our environment radiates too. The human body absorbs this radiation with an absorbance of 97.0 percent, so we don't lose our internal energy so quickly. How much power do we absorb when we are in a room where the temperature is 23.0 °C? How much energy does our body lose in one second?arrow_forwardShow detailed solutions (if there are any derivations of formulas kindly include it in the solution, thank you!)arrow_forwardQUESTION1: Stefan-Boltzman law can be used to estimate H emitted from a surface where H = AeoT, where H = surface area (m2) in units of watts, e = diffusivity characterizing the spreading properties of the surface, o = a universal constant called the Stefan-Boltzman constant. (-5.67x108 W m?K4) and T = absolute temperature (K). a) Determine the error of the radiation H of a steel sphere surface with radius = 0.15 + 0.02 m, e 0.90+ 0.05 and T = 550 ± 25 K. Compare your results with the exact error. Calculations b) radius = 0.15 0.01 m, e 0.90 +0.025 Repeat for T = 550 12.5 K. and Interpret your results.arrow_forward
- The Sun radiates almost like a perfect blackbody at a temperature of T= 5800 K. a) Show, using the Stefan-Boltzmann law, that the rate at which it radiates energy is - 4x1026 W. b) If you were at Earth's orbit, in space, how many Sun photons would reach you per second? Assume you have a mass of 70 kg, are spherical and full of water. You may need to find your cross sectional area and assume all Sun photons move in the same direction.arrow_forwardHow many particles are present in a closed container if the energy it contains is (97505.45)J, and the diatomic oxygen gas is moving at a velocity of (57.41)m/s? Use only the whole number for the value of atomic mass unit. Express your answer in proper scientific notation.arrow_forward1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax