Consider the circuit shown inFigure P4.49. The voltage source is known as a ramp function, which is defined by
Figure P4.49
Assume that
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Electrical Engineering: Principles & Applications (7th Edition)
- *P4.61. A dc source is connected to a series RLC circuit by a switch that closes at t = 0, as shown in Figure P4.61. The initial conditions are i(0+) = 0 and vc(0+) = 0. Write the dif- ferential equation for vc(t). Solve for vc(t) given that R = 80 2. t = 0 R 2 mH + V = 50 V i(t) vclt) 5 µF i(0) = 0 vc(0) = 0 Figure P4.61arrow_forwardConsider the circuit shown in Figure P4.70. a. Write the differential equation for v(t). b. Find the damping coefficient, the natural frequency, and the form of the complementary solution. c. Usually, for a sinusoidal forcing function, we try a particular solution of the form v p ( t)=A cos( 10 4 t )+B sin( 10 4 t ). Why doesn’t that work in this case? d. Find the particular solution. [Hint: Try a particular solution of the form v p ( t)=At cos( 10 4 t )+B t sin( 10 4 t ). ] e. Find the complete solution for v(t).arrow_forwardP4.30. Consider the circuit of Figure P4.30 in which the switch has been closed for a long time prior to t=0. Determine the values of v C (t) before t=0 and a long time after t=0. Also, determine the time constant after the switch opens and expressions for v C (t). Sketch v C (t) to scale versus time for -4sts16 s. 2 MA 30 V 2 uF I MO Figure P4.30arrow_forward
- P4.34. Consider the circuit shown in Figure P4.34. The initial current in the inductor is iL (0-) 0. Find expressions for i (t) and v(t) for t> 0 and sketch to scale versus time. 0.1 A (1) R = v(t) 1 k2 t = 0 1 mH Figure P4.34arrow_forward*P4.34. Consider the circuit shown in Figure P4.34. The initial current in the inductor is i L (0- )= -0.2 A. Find expressions for i L (t) and v() for t20 and sketch to scale versus time. R= 2 kl L= 0.3 A 10 mH Figure P4.34arrow_forwardUse the defining law for a capacitor to find the current iC(t) corresponding to the voltage shown in Figure P4.27. Sketch your result.arrow_forward
- P4.42. The switch shown in Figure P4.42 has been closed for a long time prior to t=0, then it opens at t=0 and closes again at t=1 s. Find i L (t) for all t. 6H 121 Figure P4.42arrow_forwardFind the energy stored in each capacitor andinductor, under steady-state conditions, in the circuitshown in Figure P4.11.arrow_forward4Carrow_forward
- Find vout (t) for the circuit shown in Figure P4.60. | 102 mA Xz = 1 k2 Vout Xc = 10 k2arrow_forwardConsider the circuit shown in Figure T4.3.a. Write the differential equation for i(t). b. Find the time constant and the form of the complementary solution. c. Find the particular solution. d. Find the complete solution for i(t).arrow_forward2. For each one of the systems in Figure P4.1, find an analytic expression for the output. Also indicate the time constant, rise time, and settling time. [Sections: 4.2, 4:3] C(s) s + 8 (a) C(s) 15 s + 15 (b)arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,