Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.15CP
Interpretation Introduction
Interpretation:
A method to calculate
Concept Introduction:
Enthalpy change of a reaction is the amount of heat absorbed or evolved during the reaction which takes place at constant pressure conditions.
The standard enthalpy change for a reaction
i.e.
Here, np and nr are the number of moles of the products and reactants.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Thermodynamics, Statistical Thermodynamics, & Kinetics
Ch. 4 - In calculating HR at 285.15 K, only the Hf of the...Ch. 4 - What is the point of having an outer water bath in...Ch. 4 - Is the following statement correct? If not rewrite...Ch. 4 - Does the enthalpy of formation of H2Ol change if...Ch. 4 - Why are elements included in the sum in Equation...Ch. 4 - Why are heat capacities of reactants and products...Ch. 4 - Prob. 4.7CPCh. 4 - Prob. 4.8CPCh. 4 - Prob. 4.9CPCh. 4 - Prob. 4.10CP
Ch. 4 - Prob. 4.11CPCh. 4 - Prob. 4.12CPCh. 4 - You wish to measure the heat of solution of NaCl...Ch. 4 - Prob. 4.14CPCh. 4 - Prob. 4.15CPCh. 4 - Prob. 4.16CPCh. 4 - Prob. 4.17CPCh. 4 - Dogs cool off in hot weather by panting. Write a...Ch. 4 - Prob. 4.19CPCh. 4 - Prob. 4.20CPCh. 4 - Given the data in Table 4.1 (Appendix, Data...Ch. 4 - Prob. 4.2NPCh. 4 - A sample of K(s) of mass 2.740 g undergoes...Ch. 4 - Calculate Hf for NO(g) at 975 K, assuming that the...Ch. 4 - Prob. 4.5NPCh. 4 - Derive a formula for HRT for the reaction...Ch. 4 - Prob. 4.7NPCh. 4 - Prob. 4.8NPCh. 4 - Calculate the standard enthalpy of formation of...Ch. 4 - The following data are a DSC scan of a solution of...Ch. 4 - Prob. 4.11NPCh. 4 - Prob. 4.12NPCh. 4 - Prob. 4.13NPCh. 4 - Prob. 4.14NPCh. 4 - Prob. 4.15NPCh. 4 - The total surface area of Asia consisting of...Ch. 4 - Prob. 4.17NPCh. 4 - A sample of Na2SO4s is dissolved in 225 g of water...Ch. 4 - Nitrogen is a vital component of proteins and...Ch. 4 - Prob. 4.20NPCh. 4 - Prob. 4.21NPCh. 4 - A 0.1429 g sample of sucrose C12H22O11 is burned...Ch. 4 - Prob. 4.23NPCh. 4 - Prob. 4.24NPCh. 4 - Prob. 4.25NPCh. 4 - Given the following heat capacity data at 298 K,...Ch. 4 - Calculate H for the process in which Cl2g...Ch. 4 - From the following data at 298.15 K C, calculate...Ch. 4 - Prob. 4.29NPCh. 4 - Use the average bond energies in Table 4.3 I to...Ch. 4 - Prob. 4.31NPCh. 4 - Prob. 4.32NPCh. 4 - Prob. 4.33NPCh. 4 - Prob. 4.34NPCh. 4 - Prob. 4.35NP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Coal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forwardOne statement of the second law of thermodynamics is that heat cannot be turned completely into work. Another is that the entropy of the universe always increases. How are these two statements related?arrow_forward9.83 A student performing a calorimetry experiment combined 100.0 mL of 0.50 M HCl and 100.0 mL of 0.50 M NaOH in a coffee cup calorimeter. Both solutions were initially at 20.0°C, but when the two were mixed, the temperature rose to 23.2°C. (a) Suppose the experiment is repeated in the same calorimeter but this time using 200 mL of 0.50 M HCl and 200.0 mL of 0.50 M NaOH. Will the T observed he greater than, less than, or equal to that in the first experiment, and why? (b) Suppose that the experiment is repeated once again in the same calorimeter, this time using 100 mL of 1.00 M HCl and 100.0 mL of 1.00 M NaOH. Will the T observed he greater than, less than, or equal to that in the first experiment, and why?arrow_forward
- The statement Energycan beneithercreatednor destroyedis sometimes used as an equivalent statement of the first law of thermodynamics. There areinaccuracies to the statement, however. Restate it tomake it less inaccurate.arrow_forwardGiven the following information at 25C, calculate G at 25C for the reaction 2A(g)+B(g)3C(g) Substance Hf(kJ/mol) S(J/molK) A(g) 191 244 B(g) 70.8 300 C(g) 197 164 a 956 kJ b 956 kJ c 346 kJ d 346 kJ e 1.03 103 kJarrow_forwardWhat are the two ways that a final chemical state of a system can be more probable than its initial state?arrow_forward
- Ethanol burns in air or oxygen according to the equation C2H5OH(l)+3O2(g)2CO2(g)+3H2O(g) Predict the sign of S for this reaction.arrow_forwardFor the reaction NO(g)+NO2(g)N2O3(g) , use tabulated thermodynamic data to calculate H and S. Then use those values to answer the following questions. (a) Is this reaction spontaneous at 25°C? Explain your answer. (b) If the reaction is not spontaneous at 25°C, will it become spontaneous at higher temperatures or lower temperatures? (c) To show that your prediction is accurate, choose a temperature that corresponds to your prediction in part (b) and calculate G . (Assume that both enthalpy and entropy are independent of temperature.)arrow_forwardWhen vapors from hydrochloric acid and aqueous ammonia come in contact, they react, producing a white cloud of solid NH4C1 (Figure 18.9). HCI(g) + NH3(g) NH4Cl(s) Defining the reactants and products as the system under study: (a) Predict whether S(system), S(surroundings), S(universe), rH, and rG (at 298 K) are greater than zero, equal to zero, or less than zero; and explain your prediction. Verify your predictions by calculating values for each of these quantities. (b) Calculate the value of Kp for this reaction at 298 K.arrow_forward
- The combustion of methane can be represented as follows: a. Use the information given above to determine the value of H for the combustion of methane to form CO2(g) and 2H2O(l). b. What is Hf for an element in its standard state? Why is this? Use the figure above to support your answer. c. How does H for the reaction CO2(g) + 2H2O (1) CH4(g) + O2(g) compare to that of the combustion of methane? Why is this?arrow_forwardWrite the balanced chemical equation for the combustion of methane, CH4(g), to give carbon dioxide and water vapor. Explain why it is difficult to predict whether S is positive or negative for this chemical reaction.arrow_forwardWhen 1.000 g of gaseous butane, C4H10, is burned at 25C and 1.00 atm pressure, H2O(l) and CO2(g) are formed with the evolution of 49.50 kJ of heat. a Calculate the molar enthalpy of formation of butane. (Use enthalpy of formation data for H2O and CO2.) b Gf of butane is 17.2 kJ/mol. What is G for the combustion of 1 mol butane? c From a and b, calculate S for the combustion of 1 mol butane.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY