Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Videos

Question
Book Icon
Chapter 4, Problem 2CLC
To determine

The weight of an astronaut on Mars, if their mass and weight on Earth are 75kg and 165 pounds, respectively. It is given that the mass and radius of Mars are 6.4×1023kg and 3.4×106m respectively.

Blurred answer
Students have asked these similar questions
The moon has a mass of 7.34 × 10 22 kg and a radius of 1.74 × 106 meters.  If you have a mass of 66 kg, how strong is the force between you and the moon?
The moon has a mass of 7.34 x 1022 kg and a radius of 1.74x106 m. If you have a mass of 66 kg, how strong is the force between you and the moon?
A 4.4 kg mass weighs 35.64 N on the surfaceof a planet similar to Earth. The radius ofthis planet is roughly 6 × 10^6 m.Calculate the mass of of this planet. Thevalue of the universal gravitational constantis 6.67259 × 10^−11 N · m^2/kg^2.Answer in units of kg. Calculate the average density of this planet.Answer in units of kg/m^3.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY