University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.15E
To determine
The final kinetic energy of the electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An x ray with a wavelength of 0.100 nm collides with an electron that is initially at rest. The electrons final wavelength is 0.110 nm. What is the final kinetic energy of the electron?
An x-ray with a wavelength of 0.1 nm collides with an electron that is initially at rest. The x-ray’s final wavelength is 0.119 nm. What is the final kinetic energy of the electron?
An x ray with a wavelength of 0.103 nm collides with an electron that is initially at rest. The x ray's final wavelength is 0.14 nm. What is the final kinetic energy of the
electron?
Express your answer in Attojoules with zero decimal place.
Chapter 38 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 38.1 - Silicon films become better electrical conductors...Ch. 38.2 - Prob. 38.2TYUCh. 38.3 - Prob. 38.3TYUCh. 38.4 - Prob. 38.4TYUCh. 38 - Prob. 38.1DQCh. 38 - Prob. 38.2DQCh. 38 - Prob. 38.3DQCh. 38 - Prob. 38.4DQCh. 38 - Prob. 38.5DQCh. 38 - Prob. 38.6DQ
Ch. 38 - Prob. 38.7DQCh. 38 - Prob. 38.8DQCh. 38 - Prob. 38.9DQCh. 38 - Prob. 38.10DQCh. 38 - Prob. 38.11DQCh. 38 - Prob. 38.12DQCh. 38 - Prob. 38.13DQCh. 38 - Prob. 38.14DQCh. 38 - Prob. 38.15DQCh. 38 - Prob. 38.16DQCh. 38 - Prob. 38.17DQCh. 38 - Prob. 38.1ECh. 38 - Prob. 38.2ECh. 38 - Prob. 38.3ECh. 38 - Prob. 38.4ECh. 38 - Prob. 38.5ECh. 38 - Prob. 38.6ECh. 38 - Prob. 38.7ECh. 38 - Prob. 38.8ECh. 38 - Prob. 38.9ECh. 38 - Prob. 38.10ECh. 38 - Prob. 38.11ECh. 38 - Prob. 38.12ECh. 38 - Prob. 38.13ECh. 38 - Prob. 38.14ECh. 38 - Prob. 38.15ECh. 38 - Prob. 38.16ECh. 38 - Prob. 38.17ECh. 38 - Prob. 38.18ECh. 38 - Prob. 38.19ECh. 38 - Prob. 38.20ECh. 38 - Prob. 38.21ECh. 38 - An electron and a positron are moving toward each...Ch. 38 - Prob. 38.23ECh. 38 - Prob. 38.24ECh. 38 - Prob. 38.25ECh. 38 - Prob. 38.26PCh. 38 - Prob. 38.27PCh. 38 - Prob. 38.28PCh. 38 - Prob. 38.29PCh. 38 - Prob. 38.30PCh. 38 - Prob. 38.31PCh. 38 - Prob. 38.32PCh. 38 - Prob. 38.33PCh. 38 - Prob. 38.34PCh. 38 - Prob. 38.35PCh. 38 - Prob. 38.36PCh. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Prob. 38.39PCh. 38 - Prob. 38.40CPCh. 38 - Prob. 38.41PPCh. 38 - Prob. 38.42PPCh. 38 - Prob. 38.43PPCh. 38 - Prob. 38.44PPCh. 38 - Prob. 38.45PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 600-nm light falls on a photoelectric surface and electrons with the maximum kinetic energy of 0.17 eV are emitted. Determine (a) the work function and (b) the cutoff frequency of the surface. (c) What is the stopping potential when the surface is illuminated with light of wavelength 400 nm?arrow_forwardElectrons in an x-ray tube accelerate through a potential difference of 10.0 kV before striking a target. If an electron produces one photon on impact with the target, what is the minimum wavelength of the resulting x rays? Find the answer by expressing energies in both SI units and electron volts.arrow_forwardA particle of matter is moving with a kinetic energy of 7.17 eV. Its de Broglie wavelength is 5.23 x 10^-12 m. What is the mass of the particle? 8.40E-27 kg 1.12E-26 kg 7.00E-27 kg 4.20E-27 kgarrow_forward
- A scientist wants to use an electron microscope to observe details on the order of 0.25 nm. Through what potential difference must the electrons be accelerated from rest so that they have a de Broglie wavelength of this magnitude?arrow_forwardAn electron, traveling at a speed of 5.80×1065.80×106 m/s, strikes the target of an X-ray tube. Upon impact, the electron decelerates to two-third of its original speed, with an X-ray photon being emitted in the process. What is the wavelength of the photon?arrow_forwardYou want to use a microscope to study the structure of a mitochondrion about 1.00 um in size. To be able to observe small details within the mitochondrion, you want to use a wavelength of 0.0500 nm. If your microscope uses light of this wavelength, what is the momentum p of a photon? p = kg-m/s If your microscope uses light of this wavelength, what is the energy E of a photon? E = If instead your microscope uses electrons of this de Broglie wavelength, what is the momentum p. of an electron? Pe = kg-m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the velocity v of an electron? v = m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the kinetic energy K of an electron? K = What advantage do your calculations suggest electrons have compared to photons? O An electron's charge allows it to attach to observed particles, whereas a photon's electric neutrality prevents it from moving close enough to the observed particles…arrow_forward
- A photon of wavelength 0.90638 nm strikes a free electron that is initially at rest. The photon is scattered straight backward. What is the speed of the recoil electron after the collision? V = i ! m/sarrow_forwardA particle of matter is moving with a kinetic energy of 5.63 eV. Its de Broglie wavelength is 2.10 x 10^-12 m. What is the mass of the particle? Question 2 options: 5.53E-26 kg 2.77E-26 kg 7.19E-26 kg 9.40E-26 kgarrow_forwardAn electron and a proton are accelerated from rest through potential differences of the same magnitude. Afterward, which particle has the larger de Broglie wavelength? Explain.arrow_forward
- A photon of wavelength 0.59242 nm strikes a free electron that is initially at rest. The photon is scattered straight backward. What is the speed of the recoil electron after the collision? V = iarrow_forwardCesium has a work function of 2.14 eV where 1.0 eV = 1.602 x 10^-9J. If radiation with a wavelength of 245 nm shines on a cesium surface what will be the de Broglie wavelength of the emitted electron? a. 718 pm b. 728 pm c 710 pm d. 698 pm e. 678 pmarrow_forwardLight of frequency 7.21×1014 Hz is incident on a metal surface. Electrons with a maximum speed of 6.0 × 105 m/s are ejected from the surface. What is the threshold frequency for photoemission of electrons?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax