Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.1P

Consider the plane wall of Figure 3.1, separating hot andcold fluids at temperatures T , 1 and T , 2 , respectively.Using surface energy balances as boundary conditions at x = 0 and x = L (see Equation 2.34), obtain the temperaturedistribution within the wall and the heat flux interms of T , 1 , T , 2 , h 1 , h 2 , k , and L.

Expert Solution & Answer
Check Mark
To determine

The temperature distribution within the wall and the heat flux.

Answer to Problem 3.1P

The temperature distribution: T(x)=(T ,1T ,2)[1 h 1+1 h 2+Lk][xk+1h1]+T,1

The heat flux: qx"=(T ,1T ,2)[1 h 1+1 h 2+Lk]

Explanation of Solution

Given information:

Temperature of hot fluid is T,1.

Temperature of cold fluid is T,2.

Figure of the plane wall:

  Introduction to Heat Transfer, Chapter 3, Problem 3.1P , additional homework tip  1

Calculations:

  Introduction to Heat Transfer, Chapter 3, Problem 3.1P , additional homework tip  2

From the general solution of the heat diffusion equation:

   T( x )= C 1 x+ C 2     ................( 1 )

   where  C 1  and  C 2  are constants of integration.

   Now applying the surface energy balance conditions:

   At x=0:  [  -k dT dt ] x=0 = h 1 [ T ,1 T( 0 ) ]    .................( 2 )

   At x=L:  [  -k dT dx ] x=L = h 2 [ T( L ) T ,2 ]    .................( 3 )

   From equation ( 1 ) and ( 2 ) with x=0:

   k( C 1 +0 )= h 1 [ T ,1 ( C 1 0+ C 2 ) ]    .................( 4 )

   And,from equation ( 1 ) and ( 3 ) with x=L:

   k( C 1 +0 )= h 2 [ ( C 1 L+ C 2 ) T ,2 ]    .................( 5 )

   Solving equation ( 4 ) and ( 5 )  for C 1  and C 2 :

   C 1 = ( T ,1 T ,2 ) k[ 1 h 1 + 1 h 2 + L k ]

   and,   C 1 = ( T ,1 T ,2 ) h 1 [ 1 h 1 + 1 h 2 + L k ] + T ,1

Substituting in equation (1), the temperature distribution is:

  T(x)=(T ,1T ,2)[1 h 1+1 h 2+Lk][xk+1h1]+T,1

Now find the heat flux using the fourier’s law:

  qx"=kdTdxor,qx"=kC1qx"=k( ( T ,1 T ,2 ) k[ 1 h 1 + 1 h 2 + L k ])qx"=( T ,1 T ,2 )[ 1 h 1 + 1 h 2 + L k]

Conclusion: The temperature distribution within the wall is T(x)=(T ,1T ,2)[1 h 1+1 h 2+Lk][xk+1h1]+T,1 and the heat flux is qx"=(T ,1T ,2)[1 h 1+1 h 2+Lk] .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
t = 30 + 0.9563 (62.2- 30) = 60.79°C (Ans.) Example 4.14. A very thin glass walled 3 mm diameter mercury thermometer is placed in a stream of air, where heat transfer coefficient is 55 W/m2°C, for measuring the unsteady temperature of air. Consider cylindrical thermometer bulb to consist of mercury only for which k and a = 0.0166 m2/h. Calculate the time required for the temperature change to reach half its final or, %3D 8.8 W/m C %3D value.
Suppose that a rod of length 150 cm is immersed in steam untill it's temperature is uo =2720c.At time t = 0,its lateral surface is insulated and its two ends are imbedded in ice at 0°C.Calculate the rod's temperature at at point on the rod at a distance x-95cm after 32 seconds ,for thermal diffisuvity K3D0.005.
It is required to perform a heat treatment for gas turbine applications, for them it is required to analyze a sample of the material to be used. The analysis will be performed using the method of a semi-infinite cylinder of stainless steel 12Awith the following thermal properties; (ρ=8700 kg/m3, Cp = 897 J/kg. °C and k = 242 W/m. °C. Of diameter D=12 cm is initially at a uniform temperature of 120 °C. Then the cylinder is placed in a furnace at a constant heat flux of 3800 W/m2, a temperature of 60 °C andh= 170 W/m2. Determine the temperature at the center of the cylinder 3.5 cm from the end surface 6 minutes after placing it in the furnace.

Chapter 3 Solutions

Introduction to Heat Transfer

Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license