Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 24.5, Problem 6E
Program Plan Intro
To prove that for every vertex
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let G = (V, E) be an undirected graph with at least two distinct vertices a, b ∈ V . Prove that we can assign a direction to each edge e ∈ E as to form a directed acyclic graph G′ where a is a source and b is a sink.
If a graph has a collection of subsets of the edge
set E, with the edges of at most one cycle: Show
that if |X| and |Y| are independent sets, show
that |X| < |Y| implies that there exists {m} E Y\X
such that X U {m} is independent.
A Hamiltonian cycle of an undirected graph G = (V, E) is a simple cycle that contains each vertex in Vonly once. A Hamiltonian path of an undirected graph G = (V, E) is a simple path that contains each vertexin V only once.
Let Ham-Cycle = {<G, u, v> : there is a Hamiltonian cycle between u and v in graph G} andHam-Path = {< G, u, v>: there is a Hamiltonian path between u and v in graph G}.
Prove that Ham-Path is NP-hard using the reduction technique, i.e. find a known NP-completeproblem L ≤p Ham-Path (reduce from the Ham-Cycle problem). Make sure to give the followingdetails:
1) Describe an algorithm to compute a function f mapping every instance of L to an instance of Ham-Path
2) Prove that x ∈ L if and only if f(x) ∈ Ham-Path
3) Show that f runs in polynomial time
Chapter 24 Solutions
Introduction to Algorithms
Ch. 24.1 - Prob. 1ECh. 24.1 - Prob. 2ECh. 24.1 - Prob. 3ECh. 24.1 - Prob. 4ECh. 24.1 - Prob. 5ECh. 24.1 - Prob. 6ECh. 24.2 - Prob. 1ECh. 24.2 - Prob. 2ECh. 24.2 - Prob. 3ECh. 24.2 - Prob. 4E
Ch. 24.3 - Prob. 1ECh. 24.3 - Prob. 2ECh. 24.3 - Prob. 3ECh. 24.3 - Prob. 4ECh. 24.3 - Prob. 5ECh. 24.3 - Prob. 6ECh. 24.3 - Prob. 7ECh. 24.3 - Prob. 8ECh. 24.3 - Prob. 9ECh. 24.3 - Prob. 10ECh. 24.4 - Prob. 1ECh. 24.4 - Prob. 2ECh. 24.4 - Prob. 3ECh. 24.4 - Prob. 4ECh. 24.4 - Prob. 5ECh. 24.4 - Prob. 6ECh. 24.4 - Prob. 7ECh. 24.4 - Prob. 8ECh. 24.4 - Prob. 9ECh. 24.4 - Prob. 10ECh. 24.4 - Prob. 11ECh. 24.4 - Prob. 12ECh. 24.5 - Prob. 1ECh. 24.5 - Prob. 2ECh. 24.5 - Prob. 3ECh. 24.5 - Prob. 4ECh. 24.5 - Prob. 5ECh. 24.5 - Prob. 6ECh. 24.5 - Prob. 7ECh. 24.5 - Prob. 8ECh. 24 - Prob. 1PCh. 24 - Prob. 2PCh. 24 - Prob. 3PCh. 24 - Prob. 4PCh. 24 - Prob. 5PCh. 24 - Prob. 6P
Knowledge Booster
Similar questions
- Suppose we have a graph G = (V, E) with m edges. Prove that there exists a partition of V into three subsets A, B, C such that there are 2m edges between these subsets (i.e. between A and B, between B and C, or between A and C). 3arrow_forward1. Prove that if v1 and v2 are distinct vertices of a graph G = (V,E) and a path exists in G from v1 to v2 , then there is a simple path in G from v1 to v2 .arrow_forwardSay that a graph G has a path of length three if there exist distinct vertices u, v, w, t with edges (u, v), (v, w), (w, t). Show that a graph G with 99 vertices and no path of length three has at most 99 edges.arrow_forward
- Show that if all edges of a graph G have pairwise distinct weights, then thereis exactly one MST for G.arrow_forwardA Hamiltonian path on a directed graph G = (V, E) is a path that visits each vertex in V exactly once. Consider the following variants on Hamiltonian path: (a) Give a polynomial-time algorithm to determine whether a directed graph G contains either a cycle or a Hamiltonian path (or both). Given a directed graph G, your algorithm should return true when a cycle or a Hamiltonian path or both and returns false otherwise. (b) Show that it is NP-hard to decide whether a directed graph G’ contains both a cycle and a Hamiltonian Path, by giving a reduction from the HAMILTONIAN PATH problem: given a graph G, decide whether it has a Hamiltonian path. (Recall that the HAMILTONIAN PATH problem is NP-complete.)arrow_forward2. Prove that in a graph G, Sc V(G) is an independent set if and only if S is a vertex cover and hence a(G)+B(G) = n(G).arrow_forward
- My professor went over the proof on this slide and I don't really understand it. Can you explain it in detail step by step?arrow_forwardLet T:V→V be the adjacency operator of the Petersen graph as illustrated in the enclosed file. Here Vis the vector space of all formal real linear combinations of the vertices v1,..,v10 of the Petersen graph. Question: compute the spectrum of the adjacency operator Tof the Petersen graph. What do you observe?arrow_forwardAn independent set of a graph G = (V, E) is a subset V’ Í V of vertices such that each edge in E is incident on at most one vertex in V’. The independent-set problem is to find a maximum-size independent set in G . Analyse the complexity of the approximation algorithm for solving the independent-set problemarrow_forward
- Let G be a connected graph that has exactly 4 vertices of odd degree: v1,v2,v3 and v4. Show that there are paths with no repeated edges from v1 to v2, and from v3 to v4, such that every edge in G is in exactly one of these paths.arrow_forwardConsider a directed graph G = (V, E), and two distinct vertices u, v V. Recall that a set of U-V paths is non-overlapping if they have no edges in common among them, and a set C of edges disconnects from U if in the graph (V, E-C) there is no path from U to V. Suppose we want to show that for any set of non-overlapping paths P and any disconnecting set C, |P| ≤ |C|. Consider the proof that defines A = P, B = C and f(path q) = qC, and applies the Pigeonhole Principle to obtain the result. True or False: f is a well-defined function (i.e. it satisfies the 3 properties of a well- defined function). True Falsearrow_forwardWe are given a graph G = (V, E); G could be a directed graph or undirected graph. Let M bethe adjacency matrix of G. Let n be the number of vertices so that the matrix M is n ×n matrix. For anymatrix A, let us denote the element of i-th row and j-th column of the matrix A by A[i, j].1. Consider the square of the adjacency matrix M . For all i and j, show that M 2[i, j] is the number ofdifferent paths of length 2 from the i-th vertex to the j-th vertex. It should be explained or proved asclearly as possible.2. For any positive integer k, show that M k[i, j] is the number of different paths of length k from the i-th vertex to the j-th vertex. You may use induction on k to prove it.3. Assume that we are given a positive integer k. Design an algorithm to find the number of different paths of length k from the i-th vertex to j-th vertex for all pairs of (i, j). The time complexity of your algorithm should be O(n3 log k). You can get partial credits if you design an algorithm of O(n3k).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education