Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24.5, Problem 2E
Program Plan Intro
To explanation the BFS moreover proof of every shortest path and shortest path tress in Graph is unique.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The minimum vertex cover problem is stated as follows: Given an undirected graph
G = (V, E) with N vertices and M edges. Find a minimal size subset of vertices X
from V such that every edge (u, v) in E is incident on at least one vertex in X. In
other words you want to find a minimal subset of vertices that together touch all the
edges.
For example, the set of vertices X = {a,c} constitutes a minimum vertex cover for the
following graph:
a---b---c---g
d
e
Formulate the minimum vertex cover problem as a Genetic Algorithm or another
form of evolutionary optimization. You may use binary representation, OR any repre-
sentation that you think is more appropriate. you should specify:
• A fitness function. Give 3 examples of individuals and their fitness values if you
are solving the above example.
• A set of mutation and/or crossover and/or repair operators. Intelligent operators
that are suitable for this particular domain will earn more credit.
• A termination criterion for the…
Let G = (V, E) be an undirected graph with vertices V and edges E. Let w(e) denote the weight of e E E. Let T C E be a
spanning tree of G.
Select all of the following that imply that T is not a minimum spanning tree (MST) for G. Incorrect choices will be penalized.
There exists e'
(u, v) g T, u, v E V such that w(e') w(e').
O There exists e' g T such that w(e') w(e) for all e E E.
O There exists e'
(u, v) É T, u, v E V such that w(e') < w(e) for all e on the shortest path from u to v in T.
O There exists e E T, e' ¢ T with w(e) < w(e').
4. Let G (V, E) be a directed graph. Suppose we have performed a DFS traversal of
G, and for each vertex v, we know its pre and post numbers. Show the following:
(a) If for a pair of vertices u, v € V, pre(u) < pre(v) < post(v) < post(u), then there
is a directed path from u to v in G.
(b) If for a pair of vertices u, v € V, pre(u) < post(u) < pre(v) < post(v), then there
is no directed path from u to v in G.
Chapter 24 Solutions
Introduction to Algorithms
Ch. 24.1 - Prob. 1ECh. 24.1 - Prob. 2ECh. 24.1 - Prob. 3ECh. 24.1 - Prob. 4ECh. 24.1 - Prob. 5ECh. 24.1 - Prob. 6ECh. 24.2 - Prob. 1ECh. 24.2 - Prob. 2ECh. 24.2 - Prob. 3ECh. 24.2 - Prob. 4E
Ch. 24.3 - Prob. 1ECh. 24.3 - Prob. 2ECh. 24.3 - Prob. 3ECh. 24.3 - Prob. 4ECh. 24.3 - Prob. 5ECh. 24.3 - Prob. 6ECh. 24.3 - Prob. 7ECh. 24.3 - Prob. 8ECh. 24.3 - Prob. 9ECh. 24.3 - Prob. 10ECh. 24.4 - Prob. 1ECh. 24.4 - Prob. 2ECh. 24.4 - Prob. 3ECh. 24.4 - Prob. 4ECh. 24.4 - Prob. 5ECh. 24.4 - Prob. 6ECh. 24.4 - Prob. 7ECh. 24.4 - Prob. 8ECh. 24.4 - Prob. 9ECh. 24.4 - Prob. 10ECh. 24.4 - Prob. 11ECh. 24.4 - Prob. 12ECh. 24.5 - Prob. 1ECh. 24.5 - Prob. 2ECh. 24.5 - Prob. 3ECh. 24.5 - Prob. 4ECh. 24.5 - Prob. 5ECh. 24.5 - Prob. 6ECh. 24.5 - Prob. 7ECh. 24.5 - Prob. 8ECh. 24 - Prob. 1PCh. 24 - Prob. 2PCh. 24 - Prob. 3PCh. 24 - Prob. 4PCh. 24 - Prob. 5PCh. 24 - Prob. 6P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Given an undirected graph G = <V,E>, a vertex cover is a subset of vertices S V such that for each edge (u,v) belongs to E, either u S or v S or both. The Vertex Cover Problem is to find minimum size of the set S. Consider the following algorithm to Vertex Cover Problem: (1) Initialize the result as {} (2) Consider a set of all edges in given graph. Let the set be E’. (3) Do following while E’ is not empty ...a) Pick an arbitrary edge (u,v) from set E’ and add u and v to result ...b) Remove all edges from E which are either incident on u or v. (4) Return result. It claim that this algorithm is exact for undirected connected graphs. Is this claim True or False? Justify the answer.arrow_forwardGiven a graph that is a tree (connected and acyclic). (I) Pick any vertex v.(II) Compute the shortest path from v to every other vertex. Let w be the vertex with the largest shortest path distance.(III) Compute the shortest path from w to every other vertex. Let x be the vertex with the largest shortest path distance. Consider the path p from w to x. Which of the following are truea. p is the longest path in the graphb. p is the shortest path in the graphc. p can be calculated in time linear in the number of edges/verticesarrow_forwardConsider a weighted, directed graph G with n vertices and m edges that have integer weights. A graph walk is a sequence of not-necessarily-distinct vertices v1, v2, ... , Vk such that each pair of consecutive vertices Vi, Vi+1 are connected by an edge. This is similar to a path, except a walk can have repeated vertices and edges. The length of a walk in a weighted graph is the sum of the weights of the edges in the walk. Let s, t be given vertices in the graph, and L be a positive integer. We are interested counting the number of walks from s to t of length exactly L. Assume all the edge weights are positive. Describe an algorithm that computes the number of graph walks from s to t of length exactly L in O((n+ m)L) time. Prove the correctness and analyze the running time. (Hint: Dynamic Programming solution)arrow_forward
- Consider a connected undirected graph G=(V,E) in which every edge e∈E has a distinct and nonnegative cost. Let T be an MST and P a shortest path from some vertex s to some other vertex t. Now suppose the cost of every edge e of G is increased by 1 and becomes ce+1. Call this new graph G′. Which of the following is true about G′ ? a) T must be an MST and P must be a shortest s - t path. b) T must be an MST but P may not be a shortest s - t path. c) T may not be an MST but P must be a shortest s - t path. d) T may not be an MST and P may not be a shortest s−t path. Pls use Kruskal's algorithm to reason about the MST.arrow_forwardWe are given a graph G = (V, E); G could be a directed graph or undirected graph. Let M bethe adjacency matrix of G. Let n be the number of vertices so that the matrix M is n ×n matrix. For anymatrix A, let us denote the element of i-th row and j-th column of the matrix A by A[i, j].1. Consider the square of the adjacency matrix M . For all i and j, show that M 2[i, j] is the number ofdifferent paths of length 2 from the i-th vertex to the j-th vertex. It should be explained or proved asclearly as possible.2. For any positive integer k, show that M k[i, j] is the number of different paths of length k from the i-th vertex to the j-th vertex. You may use induction on k to prove it.3. Assume that we are given a positive integer k. Design an algorithm to find the number of different paths of length k from the i-th vertex to j-th vertex for all pairs of (i, j). The time complexity of your algorithm should be O(n3 log k). You can get partial credits if you design an algorithm of O(n3k).arrow_forwardcomp sciencearrow_forward
- Let w be the minimum weight among all edge weights in an un-directed connected graph. Let e be a specific edge of weight w. Which of the following statements is/are TRUE/FALSE? Please discuss each of these statements on why that statement is True/False. a. Every minimum spanning tree has an edge of weight wb. If e is not in a minimum spanning tree T, then in the cycle formed by adding e to T, all edges have the same weightc. There is a minimum spanning tree containing e.d. e is present in every minimum spanning treearrow_forwardLet G = (V, E) be an undirected graph and each edge e ∈ E is associated with a positive weight ℓ(e).For simplicity we assume weights are distinct. Is the following statement true or false? Let P be the shortest path between two nodes s, t. Now, suppose we replace each edge weight ℓ(e) withℓ(e)^2, then P is still a shortest path between s and t.arrow_forwardWe have a connected graph G=(V,E), and a specific vertex u∈V. Suppose we compute a depth-first search tree rooted at u, and obtain a tree T that includes all nodes of G. Suppose we then compute a breadth-first search tree rooted at u, and obtain the same tree T. Prove that G=T. (In other words, if T is both a depth-first search tree and a breadth-first search tree rooted at u, then G cannot contain any edges that do not belong to T.)arrow_forward
- Be G=(V, E)a connected graph and u, vEV. The distance Come in u and v, denoted by d(u, v), is the length of the shortest path between u'and v, Meanwhile he width from G, denoted as A(G), is the greatest distance between two of its vertices. a) Show that if A(G) 24 then A(G) <2. b) Show that if G has a cut vertex and A(G) = 2, then Ġhas a vertex with no neighbors.arrow_forwardGiven a digraph, find a bitonic shortest path from s to every other vertex (if one exists). A path is bitonic if there is an intermediate vertex v suchthat the edges on the path from s to v are strictly increasing and the edges on the pathfrom v to t are strictly decreasing. The path should be simple (no repeated vertices).arrow_forwardGiven a digraph, find a bitonic shortest path from s to every other vertex (if one exists). A path is bitonic if there is an intermediate vertex v suchthat the edges on the path from s to v are strictly increasing and the edges on the pathfrom v to t are strictly decreasing. The path should be simplearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education