College Physics
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 24, Problem 22P

Thin-film interference

* Soap bubble 1 You look at a soap bubble film perpendicular to its surface. Describe the changes in colors of the film that you observe as the film thins and eventually breaks. Support your explanation with a ray diagram.

Blurred answer
Students have asked these similar questions
1) Typically, trombones are composed of metal brass. You can also buy trombones made from a polymer material. What would be a reason to pick one of those materials over the other? 2) On an x-ray diffraction plot sharp peaks are seen at specific angles as the x-rays are deflected by specific crystal planes. What do you think the x-ray diffraction plot would look like for an amorphous material
c) Figure Q3 (c) shows the X-ray diffraction patterns of Aluminum powder by CuK- radiation. i. Sketch the (311) plane in cubic structure using miller indices solution. ii. Calculate the planar spacing, d hkl and angle, 0 hkl for (311) peak if the lattice constant, a is 0.404 nm and I is 0.1542 nm. Note that the diffraction condition is 2dhkl sin 0 = n]. iii. Determine whether the crystal structure of Aluminum powder belongs to bcc or fcc lattices. Justify your answer. (111) 100 A=0.1542 nm (CuK „-radiation) 80 60 (200) 40 (311) (220) 20 (222) (400) (331)(420) 20 30 40 50 60 70 80 90 100 110 120 20 (degrees) Fig. Q3 (c): X-ray diffraction pattern of Aluminum powder by CuK_- radiation. Inte nsity (arbitrary units)
Question Three Two aluminium samples, A and B, are to be examined using Bragg reflection. For sample A the first-order Bragg reflection from (111) planes occurs at an angle of 25°00', while for sample B the first order Bragg reflection from (111) planes was at 25°20'. Aluminium atoms are 1.8 x 10-10 m diameter and form an FCC structure. X-radiation of wavelength 1.52 x 10-10 m is used for the analysis of two samples of aluminium. Answer the following questions: (i) Calculate the lattice parameter of an aluminium atom. (ii) Calculate the interplanar distances for the two samples. (ii) Which sample shows pure aluminium, and what is the reason for the difference? (iv) Mention four uses of pure aluminium.

Chapter 24 Solutions

College Physics

Ch. 24 - Multiple Choice Questions If you add a third slit...Ch. 24 - Multiple Choice Questions 5. Why don’t two...Ch. 24 - Multiple Choice Questions You shine a laser beam...Ch. 24 - Multiple Choice Questions 7. What does the...Ch. 24 - Prob. 8MCQCh. 24 - Multiple Choice Questions You shine a green laser...Ch. 24 - 10. Describe a double-slit interference experiment...Ch. 24 - You are investigating a pattern produced on a...Ch. 24 - 12. Give examples of phenomena that can be...Ch. 24 - 13. Give examples of phenomena that cannot be...Ch. 24 - Prob. 14CQCh. 24 - 15. Draw a point-like source of light. What is the...Ch. 24 - Draw two coherent light sources next to each...Ch. 24 - 17. Use the wave front representation to explain...Ch. 24 - 18. Use the wave front representation to explain...Ch. 24 - Compare the interference pattern produced by two...Ch. 24 - Draw 10 coherent point-like sources of light...Ch. 24 - If you see green light of 520-nm wavelength when...Ch. 24 - 22. Imagine that you have a very thin uniform oil...Ch. 24 - (a) Draw a picture of what you will see on a...Ch. 24 - Describe three situations that you can analyze...Ch. 24 - Why can you hear a person who is around a corner...Ch. 24 - 26 Astronomers often called the resolution limit...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Young’s double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Young’s double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - Gratings: an application of interference Light of...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference 12....Ch. 24 - Gratings: an application of interference Only half...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference 18....Ch. 24 - 24.4 Thin-film interference 20. * Representing...Ch. 24 - 24.4 Thin-film interference 21. * Oil film on...Ch. 24 - 24.4 Thin-film interference 22. * Soap bubble 1 ...Ch. 24 - 24.4 Thin-film interference * Soap bubble 2 soap...Ch. 24 - 24.4 Thin-film interference 24. * Thin-film coated...Ch. 24 - Thin-film interference * Thin-film coated glass...Ch. 24 - 24.4 Thin-film interference 26. Two flat glass...Ch. 24 - 24.5 Diffraction of light * Explain diffraction...Ch. 24 - 24.5 Diffraction of light * How did we derive it?...Ch. 24 - 24.5 Diffraction of light 31. * Explain a white...Ch. 24 - 24.5 Diffraction of light Light of wavelength 630...Ch. 24 - 24.5 Diffraction of light * Light of wavelength of...Ch. 24 - 24.5 Diffraction of light * Sound diffraction...Ch. 24 - 24.5 Diffraction of light * Light of wavelength...Ch. 24 - Prob. 36PCh. 24 - 24.6 Resolving power 37. Resolution of telescope ...Ch. 24 - Resolving power * Laser light of wavelength 630 nm...Ch. 24 - Resolving power * Size of small bead Infrared...Ch. 24 - Resolving power * Resolution of telescope How will...Ch. 24 - Resolving power * Detecting visual binary stars...Ch. 24 - Prob. 42PCh. 24 - 24.6 Resolving power 43 * Draw a graphical...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - Prob. 48PCh. 24 - Prob. 50PCh. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - * Monochromatic light passes through two slits and...Ch. 24 - 64. Sound from speakers Two stereo speakers...Ch. 24 - Prob. 65GPCh. 24 - 66. Diffraction of water waves entering a harbor ...Ch. 24 - ** Variable thickness wedge A wedge of glass of...Ch. 24 - Prob. 69GPCh. 24 - Looking at Moon rocks You have a home telescope...Ch. 24 - * BIO EST Diffraction-limited resolving power of...Ch. 24 - 72. * Resolving sunspots You are looking at...Ch. 24 - s Mare Imbrium The outermost ring of mountains...Ch. 24 - * Can you see atoms with a light-based microscope?...Ch. 24 - * Detecting insects by diffraction of sound A...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - BIO What is 20/20 vision? Vision is often...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY