College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 8P
24.1 and 24.2 Young’s double-slit experiment and Index of refraction, light speed, and wave coherence
Characteristics of laser light when in glass A laser light in air has a wavelength of 670 nm. What is the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which of the following statements are true statements about
Young's double slit experiment?
A. Young's experiment provided evidence that light exhibits
particle-like behavior,
B. Young's experiment depends upon the use of white light from
two sources.
C. The two sources of light in Young's experiment could be two
different light bulbs.
D.For Young's condition for constructive and destructive
interference to be geometrically valid, the wavelength of the
light must be comparable or greater than the slit separation
distance.
E. Thomas Young was able to determine the wavelength of a light
wave.
Required information
A laser has a wavelength of 546 nm. A grating and a lens are used to split the beam into three parallel beams spaced 1.85
cm apart.
What is the minimal value of the slit spacing so that the grating produces three and only three beams?
um
A single-slit diffraction experiment is performed using light of different colours. The width of the
central peak in the diffraction pattern is measured for each colour. What is the order of the colours
that corresponds to increasing widths of the central peak?
A. red, green, blue
red, blue, green
blue, green, red
green, blue, red
B.
C.
D.
Chapter 24 Solutions
College Physics
Ch. 24 - Review Question 24.1 Explain why we observe...Ch. 24 - Prob. 2RQCh. 24 - Review Question 24.3 How do the locations of the...Ch. 24 - Review Question 24.4 If we look through a grating...Ch. 24 - Review Question 24.5 Equation (24.6),...Ch. 24 - Review Question 24.6 Stars are so far away that...Ch. 24 - Prob. 7RQCh. 24 - Multiple Choice Questions
1. You shine a...Ch. 24 - Multiple Choice Questions When you shine a very...Ch. 24 - Prob. 3MCQ
Ch. 24 - Multiple Choice Questions If you add a third slit...Ch. 24 - Multiple Choice Questions
5. Why don’t two...Ch. 24 - Multiple Choice Questions You shine a laser beam...Ch. 24 - Multiple Choice Questions
7. What does the...Ch. 24 - Prob. 8MCQCh. 24 - Multiple Choice Questions You shine a green laser...Ch. 24 - 10. Describe a double-slit interference experiment...Ch. 24 - You are investigating a pattern produced on a...Ch. 24 - 12. Give examples of phenomena that can be...Ch. 24 - 13. Give examples of phenomena that cannot be...Ch. 24 - Prob. 14CQCh. 24 - 15. Draw a point-like source of light. What is the...Ch. 24 - Draw two coherent light sources next to each...Ch. 24 - 17. Use the wave front representation to explain...Ch. 24 - 18. Use the wave front representation to explain...Ch. 24 - Compare the interference pattern produced by two...Ch. 24 - Draw 10 coherent point-like sources of light...Ch. 24 - If you see green light of 520-nm wavelength when...Ch. 24 - 22. Imagine that you have a very thin uniform oil...Ch. 24 - (a) Draw a picture of what you will see on a...Ch. 24 - Describe three situations that you can analyze...Ch. 24 - Why can you hear a person who is around a corner...Ch. 24 - 26 Astronomers often called the resolution limit...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Young’s double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Young’s double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - 24.1 and 24.2 Youngs double-slit experiment and...Ch. 24 - Gratings: an application of interference Light of...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference
12....Ch. 24 - Gratings: an application of interference Only half...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference...Ch. 24 - 24.3 Gratings: an application of interference
18....Ch. 24 - 24.4 Thin-film interference
20. * Representing...Ch. 24 - 24.4 Thin-film interference
21. * Oil film on...Ch. 24 -
24.4 Thin-film interference
22. * Soap bubble 1 ...Ch. 24 - 24.4 Thin-film interference * Soap bubble 2 soap...Ch. 24 - 24.4 Thin-film interference
24. * Thin-film coated...Ch. 24 - Thin-film interference * Thin-film coated glass...Ch. 24 - 24.4 Thin-film interference
26. Two flat glass...Ch. 24 - 24.5 Diffraction of light * Explain diffraction...Ch. 24 - 24.5 Diffraction of light * How did we derive it?...Ch. 24 - 24.5 Diffraction of light
31. * Explain a white...Ch. 24 - 24.5 Diffraction of light Light of wavelength 630...Ch. 24 - 24.5 Diffraction of light * Light of wavelength of...Ch. 24 - 24.5 Diffraction of light * Sound diffraction...Ch. 24 - 24.5 Diffraction of light * Light of wavelength...Ch. 24 - Prob. 36PCh. 24 - 24.6 Resolving power
37. Resolution of telescope ...Ch. 24 - Resolving power * Laser light of wavelength 630 nm...Ch. 24 - Resolving power * Size of small bead Infrared...Ch. 24 - Resolving power * Resolution of telescope How will...Ch. 24 - Resolving power * Detecting visual binary stars...Ch. 24 - Prob. 42PCh. 24 - 24.6 Resolving power
43 * Draw a graphical...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - Prob. 48PCh. 24 - Prob. 50PCh. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - 24.7 Skills for applying the wave model of light *...Ch. 24 - * Monochromatic light passes through two slits and...Ch. 24 - 64. Sound from speakers Two stereo speakers...Ch. 24 - Prob. 65GPCh. 24 - 66. Diffraction of water waves entering a harbor ...Ch. 24 - ** Variable thickness wedge A wedge of glass of...Ch. 24 - Prob. 69GPCh. 24 - Looking at Moon rocks You have a home telescope...Ch. 24 - * BIO EST Diffraction-limited resolving power of...Ch. 24 - 72. * Resolving sunspots You are looking at...Ch. 24 - s Mare Imbrium The outermost ring of mountains...Ch. 24 - * Can you see atoms with a light-based microscope?...Ch. 24 - * Detecting insects by diffraction of sound A...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 -
BIO What is 20/20 vision? Vision is often...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - BIO What is 20/20 vision? Vision is often measured...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...Ch. 24 - Thin-film window coatings for energy conservation...
Additional Science Textbook Solutions
Find more solutions based on key concepts
18.77 CALC (a) Explain why in a gas of N molecules, the number of molecules having speeds in the finite interva...
University Physics (14th Edition)
A parallel-plate capacitor has charge of magnitude 9.00F on each plate and capacitance 3.00F when there is air ...
University Physics Volume 2
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
EXERCISE B Two satellites orbit the Earth in circular orbits of the same radius. One satellite is twice as mass...
Physics for Scientists and Engineers with Modern Physics
Write each number in scientific notation.
1. 326
Applied Physics (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose you use the same double slit to perform Young's double slit experiment in air and then repeat the experiment in water. Do the angles to the same parts of the interference pattern get larger or smaller? Does the color of the light change? Explain.arrow_forwardA laser beam is incident at a shallow angle on a horizontal machinists ruler that has a finely calibrated scale. The engraved rulings on the scale give rise to a diffraction pattern on a vertical screen. Discuss how you can use this technique to obtain a measure of the wavelength of the laser light.arrow_forward8 Postlab Questions 1. Explain the reason behind the concentricity of the interference pattern you ob- served in the experiment. 2. Colour shifting ink used in modern banknotes as a measure against counterfeit notes displays two distinct colours concept of thin-film interference, can you explain how this effect is achieved? epending on the angle of viewing. Using thearrow_forward
- Which condition is NOT required for the single-slit diffraction experimental set-up? O a. The size of the slit is similar (comparable) to the wavelength of the light. O b. Coherent and monochromatic light is used. O c. The wave (usually light) must travel through a single slit. O d. The size of the slit is very small compared to the distance of the slit from the screen.arrow_forward19. Polychromatic (white) light is incident on a diffraction grating. Which of the following best describes the central most part of the pattern seen on a screen after the light diffracts through the grating? A. ROYGBVWVBGYOR B. VBGYORWROYGBV C. VBGYORWVBGYOR D. ROYGBVWROYGBVarrow_forwardWaves and Optics. Interference, Diffraction and Polarizationarrow_forward
- Diffraction Grating A grating has a line density of 980 cm, and a screen perpendicular to the ray that makes the central peak of the diffraction pattern is 2.0 from the grating. If sight of two wavelengths, 620 m and 700 passes through the grating, what is the separation on the (flat) screen between the fifth-order maxima for the two wavelengths? G074Marrow_forwardThis questions have of multiple true & false. Choose a CORRECT set of answer for each question.arrow_forwardPlease answer the multiple choice question. You will need solve story problem attached that is a darker picture first I think. I hope you do because it confuses me. But the multiple choice is most important.arrow_forward
- Light passes through a diffraction grating with a slit spacing of 0.001 mm. A viewing screen is 100 cm behind the grating. If the light is blue, with a wavelength of 450 nm, at about what distance from the center of the interference pattern will the first-order maximum appear?A. 5 cm B. 25 cm C. 50 cm D. 100 cmarrow_forwardThe polarisation of microwaves experimental set given in the figure consists of transmitter, receiver and two slits. What will the receiver read if the Slit1 is placed at an angle of 45 degrees and Slit2 placed horizontally during the experiment? A.The receiver will read 0.5 of the transmitted wave. B.No wave will be detected by the receiver. C.The receiver will read the same wave that is lunched from the transmitter. D.The receiver will read 0.7 of the transmitted wave.arrow_forwardIf Young's double-slit experiment was performed using two different light sources, which ofthe following statements is true?A. The interference pattern would not appear.B. The interference pattern will not have dark fringes.C. The pattern will appear the same as the single-slit experiment.D. The same pattern as the double-slit experiment will be observedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY