Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 28E
The diagram shows Bob’s view of the passing of two identical spaceships. Anna’s and his own, where
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Modern Physics
Ch. 2 - Explain to your friend, who is willing to accept...Ch. 2 - A friend says, “It makes no sense that Anna could...Ch. 2 - The Lorentz transformation equations have x and t...Ch. 2 - You are gliding over Earth’s surface at a high...Ch. 2 - A thin plate has a round hole whose diameter in...Ch. 2 - In the twin paradox situation, a fellow student...Ch. 2 - Does the asymmetric aging of an Earthbound...Ch. 2 - You are floating in space when you notice a flying...Ch. 2 - Prob. 9CQCh. 2 - A relativity enthusiast says, “If E=mc2 and energy...
Ch. 2 - Prob. 11CQCh. 2 - Prob. 12CQCh. 2 - Two objects isolated from the rest of the universe...Ch. 2 - Particles of light have no mass. Does the Sun’s...Ch. 2 - Prob. 15CQCh. 2 - In a television picture tube, a beam of electrons...Ch. 2 - Prob. 17ECh. 2 - Verify that the special case x=vt,x=0 leads to...Ch. 2 - If an object actually occupies less space...Ch. 2 - Through a window in Carl’s spaceship, passing at...Ch. 2 - According to an observer on Earth, a spacecraft...Ch. 2 - According to Bob on Earth, Planet Y (uninhabited)...Ch. 2 - Anna is on a railroad flatcar moving at 0.6c...Ch. 2 - A polevaulter holds a 16 ft. pole. A barn has...Ch. 2 - Anna and Bob are in identical spaceships, each 100...Ch. 2 - Bob is watching Anna fly by in her new highspeed...Ch. 2 - Rob and Bob Jr. stand at open doorways at opposite...Ch. 2 - The diagram shows Bob’s view of the passing of two...Ch. 2 - Refer to Figure 2.18. (a) How long is a spaceship?...Ch. 2 - You are in a bus traveling on a straight road at...Ch. 2 - A spaceship travels at 0.8c. As this spaceship...Ch. 2 - You are on a highspeed train, traveling at a...Ch. 2 - A famous experiment detected 527 muons per hour at...Ch. 2 - In the frame in which they are at rest, the number...Ch. 2 - A supersonic plane travels at 420 m/s. As this...Ch. 2 - Prob. 36ECh. 2 - According to Bob, on Earth, it is 20 ly to Planet...Ch. 2 - A plank, fixed to a sled at rest in frame S, is of...Ch. 2 - Bob in frame S, is observing the moving plank of...Ch. 2 - An experimenter determines that a particle created...Ch. 2 - A muon has a mean lifetime of 2.2s in its rest...Ch. 2 - A pion is an elementary particle that, on averages...Ch. 2 - Anna and Bob have identical spaceships 60 m long....Ch. 2 - Demonstrate that equations (212) and (213) become...Ch. 2 - Planet W is 12 ly from Earth. Anna and Bob are...Ch. 2 - Anna and Bob are both born just as Anna’s...Ch. 2 - Consider Anna, Bob, and Carl in the twin paradox....Ch. 2 - You stand at the center of your 100 m spaceship...Ch. 2 - From a standstill, you begin jogging at 5 m/s...Ch. 2 - A meterstick is glued to the wall with its 100 cm...Ch. 2 - Prob. 51ECh. 2 - By what factor would a star’s characteristic...Ch. 2 - At rest, a light source emits 532 nm light. (a) As...Ch. 2 - The light from galaxy NGC 221 consists of a...Ch. 2 - A space probe has a powerful light beacon that...Ch. 2 - Prob. 56ECh. 2 - Prob. 57ECh. 2 - To catch speeders, a police radar gun detects the...Ch. 2 - Bob is on Earth. Anna is on a spacecraft moving...Ch. 2 - According to Anna, on Earth, Bob is on a spaceship...Ch. 2 - Prove that if v and u are less than c, it is...Ch. 2 - In a particle collider experiment, particle 1 is...Ch. 2 - A light beam moves in the xyplane and has an...Ch. 2 - A light beam moves at an angle ? with the xaxis as...Ch. 2 - You tire a light signal at 60° north of west. (a)...Ch. 2 - At t=0 , a bright beacon at the origin flashes,...Ch. 2 - Prob. 67ECh. 2 - By applying the relativistic velocity...Ch. 2 - Prob. 69ECh. 2 - What are the momentum, energy, and kinetic energy...Ch. 2 - What would be the internal energy, kinetic energy,...Ch. 2 - By how much (in picograms) does the mass of 1 mol...Ch. 2 - Prob. 73ECh. 2 - A typical household uses 500 kWh of energy in 1...Ch. 2 - Prob. 75ECh. 2 - Prob. 76ECh. 2 - Prob. 77ECh. 2 - Show that the relativistic expression for kinetic...Ch. 2 - At Earth’s location, the intensity of sunlight is...Ch. 2 - Prob. 80ECh. 2 - Prob. 81ECh. 2 - Prob. 82ECh. 2 - How fast must an object be moving for its kinetic...Ch. 2 - How much work must be done to accelerate an...Ch. 2 - An electron accelerated from rest through a...Ch. 2 - What is the momentum of a proton accelerated...Ch. 2 - A proton is accelerated from through a potential...Ch. 2 - xzA particle of mass m0 moves the lab at 0.6c....Ch. 2 - 89. The boron14 nucleus (mass: 14.02266 u) “beta...Ch. 2 - A 3.000 u object moving to the right through a...Ch. 2 - A 10 kg object is moving to the right at 0.6c. It...Ch. 2 - Particle 1, of mass m1 , moving at 0.8c relative...Ch. 2 - Consider the collisions of two identical...Ch. 2 - A kaon (denoted K0 ) ¡s an unstable particle mass...Ch. 2 - In the frame of reference shown, a stationary...Ch. 2 - Prob. 96ECh. 2 - Show that E2=p2c2+m2c4 follows from expressions...Ch. 2 - Equation (2-30) is an approximation correct only...Ch. 2 - According to an observer at Earth’s equator, by...Ch. 2 - If it is fundamental to nature that a given mass...Ch. 2 - Prob. 101ECh. 2 - Suppose particles begin moving in one dimension...Ch. 2 - Prob. 103ECh. 2 - From the Lorentz transformation equations, show...Ch. 2 - (a) Determine the Lorentz transformation matrix...Ch. 2 - For the situation given in Exercise 22, find the...Ch. 2 - Show that equation (236) follows from the...Ch. 2 - A 1 kg object moves at 0.8crelative to Earth. (a)...Ch. 2 - From p=umu (i.e., px=umux , py=umuy , and pz=umuz...Ch. 2 - Prob. 110ECh. 2 - An object of mass 3m0 moves to the right at...Ch. 2 - Prob. 112ECh. 2 - Derive the following expressions for the...Ch. 2 - (a) Determine the Lorentz transformation matrix...Ch. 2 - A point charge +q rests halfway between two steady...Ch. 2 - Prob. 116CECh. 2 - Prob. 117CECh. 2 - A rocket maintains a constant thrust F, giving it...Ch. 2 - Exercise 117 gives the speed u of an object...Ch. 2 - In Example 2.5, we noted that Anna could go...
Additional Science Textbook Solutions
Find more solutions based on key concepts
29. For the reaction
determine the expression for the rate of the reaction in terms of the change in concentr...
Chemistry: Structure and Properties (2nd Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
According to the logistic growth equation dNdt=rN(KN)K (A) the number of individuals added per unit time is gre...
Campbell Biology (11th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forwardOwen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forwardAn observer in frame S sees lightning simultaneously strike two points 100 m apart. The first strike occurs at x1 = y1 = z1 = t1 = 0 and the second at x2 = 100 m, y2 = z2 = t2 = 0. (a) What are the coordinates of these two events in a frame S moving in the standard configuration at 0.70c relative to S? (b) How far apart are the events in S? (c) Are the events simultaneous in S? If not, what is the difference in time between the events, and which event occurs first?arrow_forward
- Owen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forward(a) How long would the muon in Example 28.1 have lived as observed on the Earth if its velocity was 0.0500c ? (b) How far would it have traveled as observed on the Earth? (c) What distance is this in the muon's frame?arrow_forwardIf two spaceships are heading directly toward each other at 0.800c, at what speed must a canister be shot from the first ship to approach the other at 0.999c as seen by the second ship?arrow_forward
- Joe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forwardA clock on a moving spacecraft runs 1 s slower per day relative to an identical clock on Earth. What is the relative speed of the spacecraft? (Hint: For v/c << 1, note that γ ≈ 1 + v2/2c2.)arrow_forwardCalculate the momentum of a proton moving with a speed of (a) 0.010c, (b) 0.50c, (c) 0.90c. (d) Convert the answers of (a)(c) to MeV/c.arrow_forward
- A yet-to-be-built spacecraft starts from Earth moving at constant speed to the yet-to-be-discovered planet Retah, which is 20 lighthours away from Earth. It takes 25 h (according to an Earth observer) for a spacecraft to reach this planet. Assuming that the clocks are synchronized at the beginning of the journey, compare the time elapsed in the spacecraft’s frame for this one-way journey with the time elapsed as measured by an Earth-based clock.arrow_forwardConsider an electron moving with speed 0.980c. a. What is the rest mass energy of this electron? b. What is the total energyof this electron? c. What is the kinetic energy of this electron?arrow_forwardTwo spaceships approach each other, each moving with the same speed as measured by an observer on the Earth. If their relative speed is 0.70c, what is the speed of each spaceship?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY