Thermodynamics, Statistical Thermodynamics, & Kinetics
Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
Question
Book Icon
Chapter 2, Problem 2.39NP

(a)

Interpretation Introduction

Interpretation: The largest mass lifted through a height h in the expression needs to be determined.

Concept Introduction: The change in internal energy is calculated as follows:

  ΔU=nCV.m(TfTi)

Here, n is number of moles, CV,m is molar heat at constant volume and T is temperature.

The work done is represented as follows:

  w=PexternalΔV

Here, P is external pressure and ΔV is change in volume.

The enthalpy of a reaction is represented as follows:

  ΔH=ΔU+nRΔT

Here, n is number of moles, R is Universal gas constant and ΔT is change in temperature.

(b)

Interpretation Introduction

Interpretation: The smallest mass that must fall through the height in order to restore the system needs to be determined.

Concept Introduction: The change in internal energy is calculated as follows:

  ΔU=nCV.m(TfTi)

Here, n is number of moles, CV,m is molar heat at constant volume and T is temperature.

The work done is represented as follows:

  w=PexternalΔV

Here, P is external pressure and ΔV is change in volume.

The enthalpy of a reaction is represented as follows:

  ΔH=ΔU+nRΔT

Here, n is number of moles, R is Universal gas constant and ΔT is change in temperature.

(c)
Interpretation Introduction

Interpretation: The values of masses needs to be calculate in part (a) and (b).

Concept Introduction: The change in internal energy is calculated as follows:

  ΔU=nCV.m(TfTi)

Here, n is number of moles, CV,m is molar heat at constant volume and T is temperature.

The work done is represented as follows:

  w=PexternalΔV

Here, P is external pressure and ΔV is change in volume.

The enthalpy of a reaction is represented as follows:

  ΔH=ΔU+nRΔT

Here, n is number of moles, R is Universal gas constant and ΔT is change in temperature.

Blurred answer
Students have asked these similar questions
Assume N₂ behaves as perfect gas. It expands reversibly and adiabatically from Vi to Vf with the pressure change from pi to pf. (a) Derive the temperature versus volume relationship and the pressure and volume relationship for this expansion. (b) When a sample of N₂ of mass 3.12 g at 23.0 °C is allowed to expand reversibly and adiabatically from 4.00 × 10² cm3 to 2.00 dm3, what is the work done by the gas?
A 1.65 mole sample of an ideal gas for which Cv, m = 3/2 R undergoes the following two-step process: (a) From an initial state of the gas described by T = 14.5 oC and P = 2x104 Pa, the gas undergoes isothermal expansion against a constant external pressure of 1.0x104 Pa until the volume has doubled. (b) Then the gas is cooled to constant volume. The temperature drops to -35.6 oC. Calculate q, w, ΔH, ΔU for each step and for the overall process.
A sample of 2.2 mol CO2(g) is originally confined in 15 dm3 at 280 K and then undergoes adiabatic expansion against a constant pressure of 78.5 kPa until the volume has increased by a factor of 4.0. Calculate ΔT. (The final pressure of the gas is not necessarily 78.5 kPa.)

Chapter 2 Solutions

Thermodynamics, Statistical Thermodynamics, & Kinetics

Ch. 2 - Prob. 2.11CPCh. 2 - Explain how a mass of water in the surroundings...Ch. 2 - A chemical reaction occurs in a constant volume...Ch. 2 - Explain the relationship between the terms exact...Ch. 2 - In the experiment shown in Figure 2.4b, the weight...Ch. 2 - Discuss the following statement: If the...Ch. 2 - Discuss the following statement: Heating an object...Ch. 2 - An ideal gas is expanded reversibly and...Ch. 2 - An ideal gas is expanded reversibly and...Ch. 2 - An ideal gas is expanded adiabatically into a...Ch. 2 - Prob. 2.21CPCh. 2 - Prob. 2.22CPCh. 2 - A student gets up from her chair and pushes a...Ch. 2 - Explain why ethene has a higher value for CV,m at...Ch. 2 - Prob. 2.25CPCh. 2 - Prob. 2.26CPCh. 2 - A 3.75 mole sample of an ideal gas with Cv,m=3R/2...Ch. 2 - The temperature of 1.75 moles of an ideal gas...Ch. 2 - A 2.50 mole sample of an ideal gas, for which...Ch. 2 - A hiker caught in a thunderstorm loses heat when...Ch. 2 - Count Rumford observed that using cannon boring...Ch. 2 - A 1.50 mole sample of an ideal gas at 28.5C...Ch. 2 - Calculate q, w, U, and H if 2.25 mol of an ideal...Ch. 2 - Calculate w for the adiabatic expansion of 2.50...Ch. 2 - Prob. 2.9NPCh. 2 - A muscle fiber contracts by 3.5 cm and in doing so...Ch. 2 - A cylindrical vessel with rigid adiabatic walls is...Ch. 2 - In the reversible adiabatic expansion of 1.75 mol...Ch. 2 - A system consisting of 82.5 g of liquid water at...Ch. 2 - A 1.25 mole sample of an ideal gas is expanded...Ch. 2 - A bottle at 325 K contains an ideal gas at a...Ch. 2 - A 2.25 mole sample of an ideal gas with Cv,m=3R/2...Ch. 2 - Prob. 2.17NPCh. 2 - An ideal gas undergoes an expansion from the...Ch. 2 - An ideal gas described by Ti=275K,Pi=1.10bar, and...Ch. 2 - In an adiabatic compression of one mole of an...Ch. 2 - The heat capacity of solid lead oxide is given by...Ch. 2 - Prob. 2.22NPCh. 2 - Prob. 2.23NPCh. 2 - Prob. 2.24NPCh. 2 - Prob. 2.25NPCh. 2 - A 2.50 mol sample of an ideal gas for which...Ch. 2 - A 2.35 mole sample of an ideal gas, for which...Ch. 2 - Prob. 2.28NPCh. 2 - A nearly flat bicycle tire becomes noticeably...Ch. 2 - Prob. 2.30NPCh. 2 - Prob. 2.31NPCh. 2 - Consider the isothermal expansion of 2.35 mol of...Ch. 2 - An automobile tire contains air at 225103Pa at...Ch. 2 - One mole of an ideal gas is subjected to the...Ch. 2 - Prob. 2.35NPCh. 2 - A pellet of Zn of mass 31.2 g is dropped into a...Ch. 2 - Calculate H and U for the transformation of 2.50...Ch. 2 - A 1.75 mole sample of an ideal gas for which...Ch. 2 - Prob. 2.39NPCh. 2 - Prob. 2.40NPCh. 2 - The Youngs modulus (see Problem P2.40) of muscle...Ch. 2 - DNA can be modeled as an elastic rod that can be...Ch. 2 - Prob. 2.43NPCh. 2 - Prob. 2.44NP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning