Thermodynamics, Statistical Thermodynamics, & Kinetics
Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.11NP

A cylindrical vessel with rigid adiabatic walls is separated into two parts by a frictionless adiabatic piston. Each part contains 45.0 L of an ideal monatomic gas with C v , m = 3 R / 2 . Initially, T i = 3 00.  K and P i = 1 . 75x1 0 5 Pa in each part. Heat is slowly introduced into the left part using an electrical heater until the piston has moved sufficiently to the right to result in a final pressure P t = 4 .00  bar in the right part. Consider the compression of the gas in the right part to be a reversible process.

  1. Calculate the work done on the right part in this process and the final temperature in the right part.
  2. Calculate the final temperature in the left part and the amount of heat that flowed into this part.

Blurred answer
Students have asked these similar questions
A nearly flat bicycle tire becomes noticeably warmer after it has been pumped up. Approximate this process as a reversible adiabatic compression. Assume the initial pressure and temperature of the air before it is put in the tire to be P = 1.00 bar and T = 279 K. The final pressure in the tire is P₁ = 3.75 bar ▼ Part A Calculate the final temperature of the air in the tire. Assume that Cv,m = 5R/2. Express your answer with the appropriate units. Tf = μA Value Units ?
Consider one mole of a simple ideal gas enclosed in a cylindrical piston with rigid impermeable adiabatic walls. The piston has a cross sectional area ofA = 0.10 m^2 and the cylinder enclosing the gas has a height of h = 1.0 cm. The gas inside the piston has a temperature T = 300.K. Recall that the internal energy for an ideal gas is U= n cV,mT, where cV,m= 1.5 R is the molar heat capacity for the ideal gas. mass m = 15.3E3kg is placed on the top of the piston, but that the piston top remains rigid. The external pressure applied is 1.5E6 Pa. The equilubrium volume for the gas is 1.6E-3 m^3. Suppose that the piston is now allowed to move within the cylinder, but that the walls remain adiabatic and impermeable so that no heat flows into the gas. The gas system will ultimately move to a new equilibrium state. We will now characterize the final equilibrium state and the changes resulting from the process. Define the (Total System) = (the gas enclosed in the cylinder) plus (the mass placed…
One mole (1.0 mol) of an ideal gas is initially at T1 = 298 K and has volume V1 = 2.0 L.  It is then reversibly expanded to final volume V2 = 3.0 L. Assume Cp = 5/2 R and Cv = 3/2R.  a) Calculate the following if the expansion is adiabatic:     1) ΔT       2) q       3) w      4) ΔU       5) ΔH

Chapter 2 Solutions

Thermodynamics, Statistical Thermodynamics, & Kinetics

Ch. 2 - Prob. 2.11CPCh. 2 - Explain how a mass of water in the surroundings...Ch. 2 - A chemical reaction occurs in a constant volume...Ch. 2 - Explain the relationship between the terms exact...Ch. 2 - In the experiment shown in Figure 2.4b, the weight...Ch. 2 - Discuss the following statement: If the...Ch. 2 - Discuss the following statement: Heating an object...Ch. 2 - An ideal gas is expanded reversibly and...Ch. 2 - An ideal gas is expanded reversibly and...Ch. 2 - An ideal gas is expanded adiabatically into a...Ch. 2 - Prob. 2.21CPCh. 2 - Prob. 2.22CPCh. 2 - A student gets up from her chair and pushes a...Ch. 2 - Explain why ethene has a higher value for CV,m at...Ch. 2 - Prob. 2.25CPCh. 2 - Prob. 2.26CPCh. 2 - A 3.75 mole sample of an ideal gas with Cv,m=3R/2...Ch. 2 - The temperature of 1.75 moles of an ideal gas...Ch. 2 - A 2.50 mole sample of an ideal gas, for which...Ch. 2 - A hiker caught in a thunderstorm loses heat when...Ch. 2 - Count Rumford observed that using cannon boring...Ch. 2 - A 1.50 mole sample of an ideal gas at 28.5C...Ch. 2 - Calculate q, w, U, and H if 2.25 mol of an ideal...Ch. 2 - Calculate w for the adiabatic expansion of 2.50...Ch. 2 - Prob. 2.9NPCh. 2 - A muscle fiber contracts by 3.5 cm and in doing so...Ch. 2 - A cylindrical vessel with rigid adiabatic walls is...Ch. 2 - In the reversible adiabatic expansion of 1.75 mol...Ch. 2 - A system consisting of 82.5 g of liquid water at...Ch. 2 - A 1.25 mole sample of an ideal gas is expanded...Ch. 2 - A bottle at 325 K contains an ideal gas at a...Ch. 2 - A 2.25 mole sample of an ideal gas with Cv,m=3R/2...Ch. 2 - Prob. 2.17NPCh. 2 - An ideal gas undergoes an expansion from the...Ch. 2 - An ideal gas described by Ti=275K,Pi=1.10bar, and...Ch. 2 - In an adiabatic compression of one mole of an...Ch. 2 - The heat capacity of solid lead oxide is given by...Ch. 2 - Prob. 2.22NPCh. 2 - Prob. 2.23NPCh. 2 - Prob. 2.24NPCh. 2 - Prob. 2.25NPCh. 2 - A 2.50 mol sample of an ideal gas for which...Ch. 2 - A 2.35 mole sample of an ideal gas, for which...Ch. 2 - Prob. 2.28NPCh. 2 - A nearly flat bicycle tire becomes noticeably...Ch. 2 - Prob. 2.30NPCh. 2 - Prob. 2.31NPCh. 2 - Consider the isothermal expansion of 2.35 mol of...Ch. 2 - An automobile tire contains air at 225103Pa at...Ch. 2 - One mole of an ideal gas is subjected to the...Ch. 2 - Prob. 2.35NPCh. 2 - A pellet of Zn of mass 31.2 g is dropped into a...Ch. 2 - Calculate H and U for the transformation of 2.50...Ch. 2 - A 1.75 mole sample of an ideal gas for which...Ch. 2 - Prob. 2.39NPCh. 2 - Prob. 2.40NPCh. 2 - The Youngs modulus (see Problem P2.40) of muscle...Ch. 2 - DNA can be modeled as an elastic rod that can be...Ch. 2 - Prob. 2.43NPCh. 2 - Prob. 2.44NP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY