Universe: Stars And Galaxies
Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 17, Problem 33Q
To determine

(a)

The reason why given equation is correct.

To determine

(b)

The color indices for the Sun, Bellatrix and Betelgeuse.

Blurred answer
Students have asked these similar questions
The origin of the above quote (with "flame" or "candle" sometimes substituted for "light") is unclear. It is often attributed to either Lao Tzu or to the character Eldon Tyrell from the 1982 movie Blade Runner.   Stars follow a similar law, although the factor isn't precisely 1/2. In this problem, you will figure out the precise factor that the quote should have to apply to stars. Using the proportionality relationships for stellar luminosity as a function of mass and stellar lifetime as a function of mass, combine the two equations to arrive at a proportionality for stellar lifetime as a function of luminosity. Consider a star with luminosity twice that of the Sun's. Compute the star's main sequence lifetime as a multiple of the Sun's main sequence lifetime. Enter your result below as a decimal. For example, if you found TT⊙=0.3, enter "0.3". (Here T is the star's lifetime and T⊙ is the Sun's main sequence lifetime.
As a star runs out of hydrogen to fuel nuclear fusion in its core, changes within the star usually cause it to leave the main sequence, expanding and cooling as it does so. Would a star with a radius 6 times that of the Sun, but a surface temperature 0.4 times that of the Sun, be more, or less luminous than the Sun? Show and explain your reasoning. You may assume the surface area of a sphere is A = 4πr2.
A star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) Which spectral line does this likely correspond to?   Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm)     Balmer-gamma (434.0 nm) Balmer-delta (410.2 nm)

Chapter 17 Solutions

Universe: Stars And Galaxies

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning