The figure below shows the spectra of two stars on the same scale (Star A = red line; Star B = green line). The three strongest (deepest) absorption lines in each spectrum are due to the same element (they are marked with arrows in the Star A spectrum). How does the radial velocity of Star B compare to the radial velocity of Star A? (Choose the most correct answer; assume both spectra were taken from Earth.) Normalized flux 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 882 882.5 883 883.5 884 Star A Star B 884.5 885 Havelength (nm) Star B is moving away from the Earth faster than Star A. O Star A and Star B are both moving away from the Earth with the same radial velocity. O Star B is moving towards the Earth faster than Star A. O Star A and Star B are both moving towards the Earth with the same radial velocity.
The figure below shows the spectra of two stars on the same scale (Star A = red line; Star B = green line). The three strongest (deepest) absorption lines in each spectrum are due to the same element (they are marked with arrows in the Star A spectrum). How does the radial velocity of Star B compare to the radial velocity of Star A? (Choose the most correct answer; assume both spectra were taken from Earth.) Normalized flux 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 882 882.5 883 883.5 884 Star A Star B 884.5 885 Havelength (nm) Star B is moving away from the Earth faster than Star A. O Star A and Star B are both moving away from the Earth with the same radial velocity. O Star B is moving towards the Earth faster than Star A. O Star A and Star B are both moving towards the Earth with the same radial velocity.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 8 images