Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 34Q
To determine
The reason for color ratios of stars to be related to the star’s surface temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Astronomers use two basis properties of stars to classify them. These two properties are luminosity and surface temperature. Luminosity usually refers to the brightness of the star relative to the brightness of our sun. Astronomers will often use a star’s color to measure its temperature. Stars with low temperatures produce a reddish light while stars with high temperatures shine with a brilliant blue—white light. Surface temperatures of stars range from 3000o C to 50,000o C. When these surface temperatures are plotted against luminosity, the stars fall into groups. Using the data similar to what you will plot in this activity, Danish astronomer Ejnar Hertzsprung and United States astronomer Henry Norris Russell independently arrived at similar results in what is now commonly referred to as the HR Diagram.
Procedures:1. Read the Background Information
2. On the graph paper provided. Place a number next to the star according to its luminosity and surface temperature listed in the data…
What measurements would you make (assuming you have the money, time, & equipment) to determine a star’s surface temperature?
(subject: astronomy)
1. When do you say a star is very hot compared to the red.
2. are stars of equal size? explain your answer
Chapter 17 Solutions
Universe: Stars And Galaxies
Ch. 17 - Prob. 1QCh. 17 - Prob. 2QCh. 17 - Prob. 3QCh. 17 - Prob. 4QCh. 17 - Prob. 5QCh. 17 - Prob. 6QCh. 17 - Prob. 7QCh. 17 - Prob. 8QCh. 17 - Prob. 9QCh. 17 - Prob. 10Q
Ch. 17 - Prob. 11QCh. 17 - Prob. 12QCh. 17 - Prob. 13QCh. 17 - Prob. 14QCh. 17 - Prob. 15QCh. 17 - Prob. 16QCh. 17 - Prob. 17QCh. 17 - Prob. 18QCh. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - Prob. 21QCh. 17 - Prob. 22QCh. 17 - Prob. 23QCh. 17 - Prob. 24QCh. 17 - Prob. 25QCh. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Prob. 28QCh. 17 - Prob. 29QCh. 17 - Prob. 30QCh. 17 - Prob. 31QCh. 17 - Prob. 32QCh. 17 - Prob. 33QCh. 17 - Prob. 34QCh. 17 - Prob. 35QCh. 17 - Prob. 36QCh. 17 - Prob. 37QCh. 17 - Prob. 38QCh. 17 - Prob. 39QCh. 17 - Prob. 40QCh. 17 - Prob. 41QCh. 17 - Prob. 42QCh. 17 - Prob. 43QCh. 17 - Prob. 44QCh. 17 - Prob. 45QCh. 17 - Prob. 46QCh. 17 - Prob. 47QCh. 17 - Prob. 48QCh. 17 - Prob. 49QCh. 17 - Prob. 50QCh. 17 - Prob. 51QCh. 17 - Prob. 52QCh. 17 - Prob. 53QCh. 17 - Prob. 54QCh. 17 - Prob. 55QCh. 17 - Prob. 56QCh. 17 - Prob. 57QCh. 17 - Prob. 58QCh. 17 - Prob. 59QCh. 17 - Prob. 60QCh. 17 - Prob. 61QCh. 17 - Prob. 62QCh. 17 - Prob. 63QCh. 17 - Prob. 64QCh. 17 - Prob. 65QCh. 17 - Prob. 66QCh. 17 - Prob. 67QCh. 17 - Prob. 68QCh. 17 - Prob. 69QCh. 17 - Prob. 70QCh. 17 - Prob. 71QCh. 17 - Prob. 72QCh. 17 - Prob. 73QCh. 17 - Prob. 74QCh. 17 - Prob. 75QCh. 17 - Prob. 76QCh. 17 - Prob. 77QCh. 17 - Prob. 78QCh. 17 - Prob. 79QCh. 17 - Prob. 80Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the main reason that the spectra of all stars are not identical? Explain.arrow_forwardExplain how you would use the spectrum of a star to estimate its distance.arrow_forwardSpectral types are an indicator of temperature. For the first 10 stars in Appendix J, the list of the brightest stars in our skies, estimate their temperatures from their spectral types. Use information in the figures and/or tables in this chapter and describe how you made the estimates.arrow_forward
- Explain why color is a measure of a star’s temperature.arrow_forwardThe spectrum of the Sun has hundreds of strong lines of nonionized iron but only a few, very weak lines of helium. A star of spectral type B has very strong lines of helium but very weak iron lines. Do these differences mean that the Sun contains more iron and less helium than the B star? Explain.arrow_forwardName five characteristics of a star that can be determined by measuring its spectrum. Explain how you would use a spectrum to determine these characteristics.arrow_forward
- . The spectrum of Star A peaks at 700 nm. The spectrum of Star B peaks at 470 nm. We know nothing about what stage of stellar evolution either of these stars are in. Which of the following are true? A. Star A has a higher luminosity than Star B. B. Star B has a higher luminosity than Star A. C. Star A is cooler than Star B. D. Not enough information to comment on their luminosities. E. B and C F. C and Darrow_forwardSuppose the distribution of light from a star is observed to have maximum intensity at wavelength = 700 nm. P Calculate K = I 4 T R² where P is the total luminosity of the star and R is the radius. Hint: The star is a blackbody radiator; what is its temperature?arrow_forwardA star has a luminosity (power output) of 9.2x1026 W and a diameter of 6.1x108 m. What is its surface temperature? (Give your answer in SI units and include the units in your answer.)arrow_forward
- The spectral type of a star is directly related to its color. Recall that a star emits light as a blackbody, which has a particular shape to its spectrum, as shown in this figure. Based on this, what basic property of a star determines its color (and thus its spectral type)? Choose one: A. age B. composition C. radius D. temperaturearrow_forwardOur Sun is considered an "average" star. What is the average star really like? Explain. Could you go out at night and point out an average star? Why or why not?arrow_forwardA bright red star is moving towards Earth. Which of the choices best completes the following statement describing the spectrum of this star? A(n) ___________ spectrum that is _______ relative to an unmoving star. A. continuous; blueshifted B. continuous; redshifted C. emission; redshifted D. absorption; blueshifted E. absorption; redshiftedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning