Concept explainers
Draw the Lewis structures for
Trending nowThis is a popular solution!
Chapter 14 Solutions
Chemical Principles
- It is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forwarda Nitrogen trifluoride, NF3, is a relatively unreactive, colorless gas. How would you describe the bonding in the NF3 molecule in terms of valence bond theory? Use hybrid orbitals. b Silicon tetrafluoride, SiF4, is a colorless gas formed when hydrofluoric acid attacks silica (SiO2) or glass. Describe the bonding in the SiF4 molecule, using valence bond theory.arrow_forwardThe sulfamate ion, H2NSO3, can be thought of as having been formed from the amide ion, NH2, and sulphur trioxide, SO3. (a) What are the electron-pair and molecular geometries or the amide ion and or SO3? What are the hybridizations of the N and S atoms, respectively? (b) Sketch a structure for the sulfamate ion, and estimate the bond angles. (c) What changes in hybridization do you expect for N and S in the course of the reaction NH2 + SO3 H2NSO3? (d) Is SO3 the donor of an electron pair or the acceptor of an electron pair in the reaction with amide ion? Does the electrostatic potential map shown below confirm your prediction?arrow_forward
- Describe the hybridization around the central atom and the bonding in SCl2 and OCS.arrow_forwardTwo compounds have the molecular formula N3H3. One of the compounds, triazene, contains an NN bond; the other compound, triaziridene, does not. (a) Write the correct Lewis structures for each compound. (b) Approximate the bond angle between the three nitrogen atoms in each compound.arrow_forwardBorax has the molecular formula Na2B4O5(OH)4. The structure of the anion in this compound is shown below. What is the electron pair geometry and molecular geometry surrounding each of the boron atoms in this anion? What hybridization can be assigned to each of the boron atoms? What is the formal charge of each boron atom?arrow_forward
- Suppose you carry out the following reaction of ammonia and boron trifluoride in the laboratory. (a) What is the geometry of the boron atom in BF3? In H3NBF3? (b) What is the hybridization of the boron atom in the two compounds? (c) Considering the structures and bonding of NH3 and BF3, why do you expect the nitrogen on NH3 to donate an electron pair to the B atom of BF3? (d) BF3 also reacts readily with water. Based on the ammonia reaction above, speculate on how water can interact with BF3.arrow_forwardIdentify the hybrid orbitals used by boron in BCl3 and in BCl4, the ion formed from the reaction of BCl3 and Cl. Explain your choices.arrow_forwardBest Lewis Formula and Molecular Geometry A student writes the Lewis electron-dot formula for the carbonate anion, CO32, as a Does this Lewis formula obey the octet rule? Explain. What are the formal charges on the atoms? Try describing the bonding for this formula in valence bond terms. Do you have any difficulty doing this? b Does this Lewis formula give a reasonable description of the electron structure, or is there a better one? If there is a better Lewis formula, write it down and explain why it is better. c The same student writes the following resonance description for CO2: Is there something wrong with this description? (What would you predict as the geometries of these formulas?) d Is one or the other formula a better description? Could a value for the dipole moment help you decide? e Can you write a Lewis formula that gives an even better description of CO2? Explain your answer.arrow_forward
- The structure of amphetamine, a stimulant, is shown below. (Replacing one H atom on the NH2, or amino, group with CH3 gives methamphetamine a particularly dangerous drug commonly known as speed.) (a) What are the hybrid orbitals used by the C atoms of the C6 ring. by the C atoms of the side chain, and by the N atom? (b) Give approximate values for the bond angles A, B, and C. (c) How many bonds and bonds are in the molerule? (d) Is the molecule polar or nonpolar? (e) Amphetamine reacts readily with a proton (H+) in aqueous solution. Where does this proton attach to the molecule? Explain how the electrostatic potential map predicts this site of protonation.arrow_forwardDraw the Lewis structure for 1, 1-dimethylhydrazine [(CH3)2NNH2, a compound used as a rocket fuel]. What: is the hybridization for the two nitrogen atoms in this molecule? What orbitals overlap to form the bond between the nitrogen atoms?arrow_forwardThe simple valence bond picture of O2 does not agree with the molecular orbital view. Compare these two theories with regard to the peroxide ion, O22. (a) Draw an electron dot structure for O22. What is the bond order of the ion? (b) Write the molecular orbital electron configuration for O22. What is the bond order based on this approach? (c) Do the two theories of bonding lead to the same magnetic character and bond order fo r O22 ss?arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning