Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 10E
Interpretation Introduction
Interpretation:
The hybridization which is needed for central atoms which have tetrahedral arrangement of electron pairs and linear arrangement of electron pairs should be determined. The number of unhybridized p-atomic orbitals present when the geometry of central atom is tetrahedral, trigonal planar and linear. The uses of unhybridized p-atomic orbitals should be determined.
Concept Introduction:
When two atomic orbitals combine with each other to produce hybrid orbitals, redistribution of energy of orbitals of distinct atoms to form orbitals with equal energy occurs. This process is known as hybridization and the formed new orbitals are known as hybrid orbitals.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What hybridization is required for central atoms that have a tetrahedral arrangement ofelectron pairs? A trigonal planar arrangement of electron pairs? A linear arrangement ofelectron pairs? How many unhybridized p atomic orbitals are present when a centralatom exhibits tetrahedral geometry? Trigonal planar geometry? Linear geometry? Whatare the unhybridized p atomic orbitals used for?
For a homonuclear diatomic molecule, what type of molecular orbital does the
illustration shown below represent? Note: the
represents each nuclei.
a bonding o orbital formed from two p atomic orbitals.
a bonding o orbital formed from two s atomic orbitals.
a bonding o orbital formed from one p and one s atomic orbital.
a bonding n orbital formed from one s and one p atomic orbital.
a bonding n orbital formed from two p atomic orbitals.
bonding
electron
Molecular
Central Atom
pairs (bp)
Electron
Geometry
Hybridization
Molecular Compound
Dipole
Moment
Dot
Formula
Name
(Lewis)
Structure
Number of
(Yes or No)
lone
electron
Electron Dot
Bond
Geometry
Angle(s)
pairs (lp)
CO2
BF3
NO2
CH4
NH3
H2S
PFs
SF4
CIF3
I3
SF6
BrFs
XeF4
MacBook Air
80
Q
DII
F3
F4
F5
F6
F7
F8
F9
F10
Chapter 14 Solutions
Chemical Principles
Ch. 14 - Prob. 1DQCh. 14 - Prob. 2DQCh. 14 - Prob. 3DQCh. 14 - Prob. 4DQCh. 14 - Prob. 5DQCh. 14 - Prob. 6DQCh. 14 - Compare and contrast the MO model with the LE...Ch. 14 - Prob. 8DQCh. 14 - Prob. 9ECh. 14 - Prob. 10E
Ch. 14 - Prob. 11ECh. 14 - Prob. 12ECh. 14 - Prob. 13ECh. 14 - Use the localized electron model to describe the...Ch. 14 - Prob. 15ECh. 14 - Use the LE model to describe the bonding in H2CO...Ch. 14 - Prob. 17ECh. 14 - The space-filling models of hydrogen cyanide and...Ch. 14 - Prob. 19ECh. 14 - Prob. 20ECh. 14 - Prob. 21ECh. 14 - Indigo is the dye used in coloring blue jeans. The...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Why must all six atoms in C2H4 be in the same...Ch. 14 - The allene molecule has the following Lewis...Ch. 14 - Biacetyl and acetoin are added to margarine to...Ch. 14 - Many important compounds in the chemical industry...Ch. 14 - Prob. 29ECh. 14 - Hot and spicy foods contain molecules that...Ch. 14 - Two molecules used in the polymer industry are...Ch. 14 - Prob. 32ECh. 14 - The three most stable oxides of carbon are carbon...Ch. 14 - Prob. 34ECh. 14 - Prob. 35ECh. 14 - What are the relationships among bond order, bond...Ch. 14 - Prob. 37ECh. 14 - A Lewis structure obeying the octet rule can be...Ch. 14 - Prob. 39ECh. 14 - Why does the molecular orbital model do a better...Ch. 14 - Prob. 41ECh. 14 - Prob. 42ECh. 14 - Prob. 43ECh. 14 - In which of the following diatomic molecules would...Ch. 14 - Prob. 45ECh. 14 - Using the molecular orbital model to describe the...Ch. 14 - The transport of O2 in the blood is carried out by...Ch. 14 - Prob. 48ECh. 14 - Prob. 49ECh. 14 - Consider the following electron configuration:...Ch. 14 - Prob. 51ECh. 14 - Using an MO energy-level diagram, would you expect...Ch. 14 - Use Figs.14.45 and 14.46 to answer the following...Ch. 14 - The diatomic molecule OH exists in the gas phase....Ch. 14 - Prob. 55ECh. 14 - Describe the bonding in the O3 molecule and the...Ch. 14 - Prob. 57ECh. 14 - The space-filling model for benzoic acid is shown...Ch. 14 - Prob. 59ECh. 14 - Prob. 60ECh. 14 - The microwave spectrum of 12C16O shows that the...Ch. 14 - Prob. 62ECh. 14 - Prob. 63ECh. 14 - Prob. 64ECh. 14 - Draw the Lewis structures, predict the molecular...Ch. 14 - Prob. 66AECh. 14 - Prob. 67AECh. 14 - Prob. 68AECh. 14 - Prob. 69AECh. 14 - Prob. 70AECh. 14 - Prob. 71AECh. 14 - Prob. 72AECh. 14 - Prob. 73AECh. 14 - Vitamin B6 is an organic compound whose deficiency...Ch. 14 - Prob. 75AECh. 14 - Prob. 76AECh. 14 - Prob. 77AECh. 14 - Prob. 78AECh. 14 - Prob. 79AECh. 14 - Draw the Lewis structures for TeCl4 , ICl5 , PCl5...Ch. 14 - Prob. 81AECh. 14 - Pelargondin is the molecule responsible for the...Ch. 14 - Prob. 83AECh. 14 - Prob. 84AECh. 14 - Prob. 85AECh. 14 - Prob. 86AECh. 14 - Given that the ionization energy of F2 is...Ch. 14 - Bond energy has been defined in the text as the...Ch. 14 - a.A flask containing gaseous N2 is irradiated with...Ch. 14 - Use the MO model to determine which of the...Ch. 14 - Cholesterol (C27H46O) has the following structure:...Ch. 14 - Arrange the following from lowest to highest...Ch. 14 - Carbon monoxide (CO) forms bonds to a variety of...Ch. 14 - Prob. 94CPCh. 14 - In Exercise71 in Chapter13 , the Lewis structures...Ch. 14 - Prob. 96CPCh. 14 - Prob. 97CPCh. 14 - Prob. 98MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Lets look more closely at the process of hybridization. (a) What is the relationship between the number of hybrid orbitals produced and the number of atomic orbitals used to create them? (b) Do hybrid atomic orbitals form between different p orbitals without involving 5 orbitals? (c) What is the relationship between the energy of hybrid atomic orbitals and the atomic orbitals from which they are formed?arrow_forward7.96 Consider the hydrocarbons whose structures are shown below. Which of these molecules would be planar, meaning that all of the atoms must lie in the same plane? Explain your answer in terms of orbital hybridizations.arrow_forwardMethylcyanoacrylate is the active ingredient in super glues. Its Lewis structure is (a) How many sigma bonds are in the molecule? (b) How many pi bonds are in the molecule? (c) What is the hybridization of the carbon atom bonded to nitrogen? (d) What is the hybridization of the carbon atom bonded to oxygen? (e) What is the hybridization of the double-bonded oxygen?arrow_forward
- What hybridization is required for central atoms that have a tetrahedral arrangement of electron pairs? A trigonal planar arrangement of electron pairs? A linear arrangement of e lectron pairs? How many unhybridized p atomic orbitals are present when a central atom exhibits tetrahedral geometry? Trigonal planar geometry? Linear geometry? What are the unhybridized p atomic orbitals used for? Describe the bonding in H2S, CH4, H2CO, and HCN, using the localized electron model.arrow_forward7.91 A Lewis structure for the oxalate ion is shown below. (One or more other resonance forms are also possible.) What is the correct charge on the oxalate ion? What type of orbital hybridization is expected for each of the carbon atoms in this structure? How many sigma bonds and how many pi bonds does the structure contain?arrow_forward7.59 What type of hybrid orbital is generated by combining the valence s orbital and all three valence p orbitals of an atom? How many hybrid orbitals result?arrow_forward
- • explain how hybridization reconciles observed molecular shapes with the orbital overlap model.arrow_forwardFor each of the following molecules, state the bond angle (or bond angles, as appropriate) that you would expect to see on the central atom based on the simple VSEPR model. Would you expect the actual bond angles to be greater or less than this? a CCl4 b SCl2 c COCl2 d AsH3arrow_forwardFClO2 and F3ClO can both gain a fluoride ion to form stable anions. F3ClO and F3ClO2 will both lose a fluoride ion to form stable cations. Draw the Lewis structures and describe the hybrid orbitals used by chlorine in these ions.arrow_forward
- Predict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions. (a) Na,2+ (b) Mg,2 (c) AI,2 (d) Si,2 (e) p2+ (f) s,2 (g) F,2 (h) Ar,2 40. Predict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions. (a) Na22+ (b) Mg22+ (c) Al22+ (d) Si22+ (e) P22+ (f) S22+ (g) F22+ (h) Ar22+arrow_forwardWhich of the following descriptions of a sigma bond (according to valence bond theory) is NOT CORRECT? Select one: OA. A sigma bond is formed when two adjacent, parallel p orbitals overlap along their sides. O B. When a sigma bond is formed, a shared electron pair lies on the bond axis of adjacent, bonded atoms. OC. A sigma bond is formed between adjacent atoms when hybrid orbitals, co-linear with the bond axis, overlap. O D. A sigma bond is formed when an s orbital overlaps with a hybrid orbital.arrow_forwardWhich statements accurately describe sigma bonds? Sigma bonds can only result from the overlap of two p orbitals. Sigma bonds only form when regions of orbitals with different signs overlap. Sigma bonds are symmetric about the internuclear axis. Sigma bonds result from the overlap of orbitals in only one region of space. Sigma bonds result from the overlap of orbitals in two regions of space. Sigma bonds cannot rotate without interfering with orbital overlap. A sigma bond could result from the sideways (as opposed to head-on) overlap of two p orbitals. Sigma bonds only form when regions of orbitals with the same sign overlap.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY