Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 106AE
A standard galvanic cell is constructed so that the overallcell reaction is
where M is an unknown metal. If
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Chemical Principles
Ch. 11 - Prob. 1DQCh. 11 - Prob. 2DQCh. 11 - You want to “plate out” nickel metal from a nickel...Ch. 11 - A copper penny can be dissolved in nitric acid but...Ch. 11 - Sketch a cell that forms iron metal from iron(II)...Ch. 11 - Which of the following is the best reducing agent:...Ch. 11 - You are told that metal A is a better reducing...Ch. 11 - Explain the following relationships: G and w, cell...Ch. 11 - Explain why cell potentials are not multiplied by...Ch. 11 - What is the difference between andWhen is equal to...
Ch. 11 - Prob. 11DQCh. 11 - Look up the reduction potential for Fe3+toFe2+ ....Ch. 11 - Prob. 13DQCh. 11 - Is the following statement true or false?...Ch. 11 - What is electrochemistry? What are redox...Ch. 11 - When magnesium metal is added to a beaker of...Ch. 11 - Prob. 17ECh. 11 - How can you construct a galvanic cell from two...Ch. 11 - Prob. 19ECh. 11 - Prob. 20ECh. 11 - Prob. 21ECh. 11 - Consider the following galvanic cells: For each...Ch. 11 - Prob. 23ECh. 11 - Prob. 24ECh. 11 - Answer the following questions using data from...Ch. 11 - Prob. 26ECh. 11 - Using data from Table 11.1, place the following in...Ch. 11 - Prob. 28ECh. 11 - Use the table of standard reduction potentials...Ch. 11 - Use the table of standard reduction potentials...Ch. 11 - Prob. 31ECh. 11 - A patent attorney has asked for your advice...Ch. 11 - The free energy change for a reaction G is an...Ch. 11 - The equation also can be applied to...Ch. 11 - Prob. 35ECh. 11 - Glucose is the major fuel for most living cells....Ch. 11 - Direct methanol fuel cells (DMFCs) have shown...Ch. 11 - The overall reaction and standard cell potential...Ch. 11 - Calculate the maximum amount of work that can...Ch. 11 - Prob. 40ECh. 11 - Prob. 41ECh. 11 - Chlorine dioxide (ClO2) , which is produced by...Ch. 11 - The amount of manganese in steel is determined...Ch. 11 - The overall reaction and equilibrium constant...Ch. 11 - Prob. 45ECh. 11 - Calculate for the reaction...Ch. 11 - A disproportionation reaction involves a substance...Ch. 11 - Calculate for the following half-reaction:...Ch. 11 - For the following half-reaction AlF63+3eAl+6F...Ch. 11 - Prob. 50ECh. 11 - The solubility product for CuI(s) is 1.11012....Ch. 11 - Explain the following statement: determines...Ch. 11 - Calculate the pH of the cathode compartment for...Ch. 11 - Consider the galvanic cell based on the...Ch. 11 - Prob. 55ECh. 11 - Consider the following galvanic cell at 25°C:...Ch. 11 - The black silver sulfide discoloration of...Ch. 11 - Consider the cell described below:...Ch. 11 - Consider the cell described below:...Ch. 11 - Prob. 60ECh. 11 - Prob. 61ECh. 11 - Prob. 62ECh. 11 - What are concentration cells? What is in a...Ch. 11 - A silver concentration cell is set up at 25°C as...Ch. 11 - Consider the concentration cell shown below....Ch. 11 - Prob. 66ECh. 11 - Prob. 67ECh. 11 - An electrochemical cell consists of a nickel metal...Ch. 11 - You have a concentration cell in which the cathode...Ch. 11 - Consider a galvanic cell at standard conditions...Ch. 11 - An electrochemical cell consists of a zinc metal...Ch. 11 - How long will it take to plate out each of the...Ch. 11 - What mass of each of the following substances can...Ch. 11 - It took 2.30 min with a current of 2.00 A to plate...Ch. 11 - The electrolysis of BiO+ produces pure bismuth....Ch. 11 - A single HallHeroult cell (as shown in Fig. 11.22)...Ch. 11 - A factory wants to produce 1.00103 kg barium...Ch. 11 - Why is the electrolysis of molten salts much...Ch. 11 - What reaction will take place at the cathode and...Ch. 11 - What reaction will take place at the cathode and...Ch. 11 - Prob. 81ECh. 11 - a. In the electrolysis of an aqueous solution of...Ch. 11 - A solution at 25°C contains 1.0 M...Ch. 11 - An aqueous solution of an unknown salt of...Ch. 11 - Consider the following half-reactions: A...Ch. 11 - An unknown metal M is electrolyzed. It took 74.1 s...Ch. 11 - Electrolysis of an alkaline earth metal chloride...Ch. 11 - Prob. 88ECh. 11 - What volume of F2 gas, at 25°C and 1.00 atm, is...Ch. 11 - Prob. 90ECh. 11 - In the electrolysis of a sodium chloride solution,...Ch. 11 - What volumes of H2(g)andO2(g) at STP are...Ch. 11 - Copper can be plated onto a spoon by placing the...Ch. 11 - Prob. 94AECh. 11 - Prob. 95AECh. 11 - Prob. 96AECh. 11 - Prob. 97AECh. 11 - Prob. 98AECh. 11 - Prob. 99AECh. 11 - Prob. 100AECh. 11 - Prob. 101AECh. 11 - Prob. 102AECh. 11 - Prob. 103AECh. 11 - Prob. 104AECh. 11 - In 1973 the wreckage of the Civil War ironclad...Ch. 11 - A standard galvanic cell is constructed so that...Ch. 11 - Prob. 107AECh. 11 - Prob. 108AECh. 11 - Prob. 109AECh. 11 - Prob. 110AECh. 11 - Prob. 111AECh. 11 - Prob. 112AECh. 11 - Prob. 113AECh. 11 - Consider a galvanic cell based on the following...Ch. 11 - Prob. 115AECh. 11 - Prob. 116AECh. 11 - Prob. 117AECh. 11 - Prob. 118AECh. 11 - Prob. 119CPCh. 11 - Prob. 120CPCh. 11 - A zinccopper battery is constructed as follows:...Ch. 11 - Prob. 122CPCh. 11 - Prob. 123CPCh. 11 - Prob. 124CPCh. 11 - Prob. 125CPCh. 11 - Prob. 126CPCh. 11 - Prob. 127CPCh. 11 - Prob. 128CPCh. 11 - Prob. 129CPCh. 11 - Prob. 130CPCh. 11 - Prob. 131CPCh. 11 - Prob. 132MPCh. 11 - Prob. 133MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A standard galvanic cell is constructed so that the overall cell reaction is 2A13++(aq)+3M(s)3M2+(aq)+2A1(s) Where M is an unknown metal. If G = 411 kJ for the overall cell reaction, identify the metal used to construct the standard cell.arrow_forwardAn electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forwardFor each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mn(s)+Ni2+(aq)Mn2+(aq)+Ni(s) (b) 3Cu2+(aq)+2Al(s)2Al3+(aq)+3Cu(s) (c) Na(s)+LiNO3(aq)NaNO3(aq)+Li(s) (d) Ca(NO3)2(aq)+Ba(s)Ba(NO3)2(aq)+Ca(s)arrow_forward
- What is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forward
- For each of the reactions, calculate E from the table of standard potentials, and state whether the reaction is spontaneous as written or spontaneous in the reverse direction under standard conditions. (a) Cu2+(aq)+Ni(s)Cu(s)+Ni2+(aq) (b) 2Ag(s)+Cl2(g)2AgCl(s) (c) Cl2(g)+2I(aq)2Cl(aq)+I2(s)arrow_forwardConsider the electrolysis of water in the presence of very dilute H2SO4. What species is produced at the anode? Atthe cathode? What are the relative amounts of the speciesproduced at the two electrodes?arrow_forwardConsider a galvanic cell based on the following half-reactions: a. What is the expected cell potential with all components in their standard states? b. What is the oxidizing agent in the overall cell reaction? c. What substances make up the anode compartment? d. In the standard cell, in which direction do the electrons flow? e. How many electrons are transferred per unit of cell reaction? f. If this cell is set up at 25C with [Fe2+] = 2.00 104 M and [La3+] = 3.00 103 M, what is the expected cell potential?arrow_forward
- Calcium metal can be obtained by the direct electrolysis of molten CaCl2, at a voltage of 3.2 V. (a) How many joules of electrical energy are required to obtain 12.0 1b of calcium? (b) What is the cost of the electrical energy obtained in (a) if electrical energy is sold at the rate of nine cents per kilowatt hour?arrow_forwardA voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forwardAnother type of battery is the alkaline zinc-mercury cell, in which the cell reaction is Zn(s) + HgO(s) Hg() + ZnO(s) E = + 1.35 V (a) What is the standard free energy change for this reaction? (b) The standard free energy change in a voltaic cell is the maximum electrical energy that the cell can produce. If the reaction in a zinc-mercury cell consumes 1.00 g mercury oxide, what is the standard free energy change? (c) For how many hours could a mercury cell produce a 10-mA current if the limiting reactant is 3.50 g mercury oxide?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY