Concept explainers
a.
Explain the meaning of each type of symmetry.
a.
Answer to Problem 27RCC
The graph is reflect over the
Explanation of Solution
Given information:
Explain the meaning of each type of symmetry. How do you test for it? Symmetry with respect to the
Calculation:
Graph of any function can have certain symmetrical properties that have both graphical and algebraic meaning.
A graph can be symmetrical with respect to
On comparing reflecting over
Hence, the graph is reflect over the
b.
Explain the meaning of each type of symmetry.
b.
Answer to Problem 27RCC
The graph is reflect over the
Explanation of Solution
Given information:
Explain the meaning of each type of symmetry. How do you test for it? Symmetry with respect to the
Calculation:
Graph of any function can have certain symmetrical properties that have both graphical and algebraic meaning.
A graph can be symmetrical with respect to
We can define this property algebraically by the condition:
On comparing reflecting over
Hence, the graph is reflect over the
c.
Explain the meaning of each type of symmetry.
c.
Answer to Problem 27RCC
The graph is rotate
Explanation of Solution
Given information:
Explain the meaning of each type of symmetry. How do you test for it? Symmetry with respect to the origin.
Calculation:
Graph of any function can have certain symmetrical properties that have both graphical and algebraic meaning.
A graph can be symmetrical with respect to origin, if we consider such a graph as representing a function, then the function is said to be an “odd function.”
Algebraically
To test for symmetrical with respect to origin graphically, rotate the function
Hence, the graph is rotate
Chapter 1 Solutions
Precalculus - A Custom Text for UNLV
- 4. Su Write out the first four terms of the Maclaurin series of f(x) if f(0) = -9, f'(0) = 4, f"(0) = -12, f""(0) = 5 f(x) = +... Submit answer Next item Answers Attempt 7 of 7 Answer ][ 0 T The Weather Channel DELL UP P Score F4 F5 F6 F7 F8 % A 5 6 &arrow_forwardH.W Ex find the solution by using Bernoulli method of D.E? dy/dx4y = xy³/2arrow_forwardby series find the Solution U (x) = x²- X³+ x²+'S (1+x+) u(t) st 0 (2) u(x) = x's (6x-2+) u(t) St U (x) = x + 2 {xt 41t) dt u(x)=x+2arrow_forward
- Consider the Boundary-Initial Value problem J²u и ди 4 0 0 მე2 It u(0,t) = 0, 0, u(6,t) = 0, t>0 u(x, 0) = x(6x), 0 < x <6 This models a heated wire, with zero endpoints temperatures. The solution u(x,t) of the initial-boundary value problem is given by the series u(x,t)-b, sin П3 n=1 (b, sin ((2n − 1) — x) e-cnt where bn ☐ and Сп ☐arrow_forward• -7 10 1.0 (2 - x) for 0 < x < 2, Let f(x) = for 2< x < 6. Compute the Fourier cosine coefficients for f(x). Ao An Give values for the Fourier cosine series C(x) = = Ao • C(6) = = C(-1) = = C(11) = + n=1 IM 8 An cos пп (π x ). 6arrow_forwardThe Fourier series of the function is given by where со Сп and bn || f(x) = {- 9x if π < x < 0 -4x if 0 < x < π f(x) ~ CO n=0 (Cn cos ((2n+1) x) - Σ bn sin (nx) n=1arrow_forward
- Consider the Boundary-Initial Value problem a²u J²u 9 მე2 Ət²' , 0 0 u(0,t) = 0, u(5,t) = 0, ди u(x, 0) = x(5 − x), at t>0 (x, 0) = 0, 0 < x < 5 This models the displacement u(x,t) of a freely vibrating string, with fixed ends, initial profile x (5 - x), and zero initial velocity. The solution u(x, t), is given by the series ∞ 4 u(x, t) = n=1 bɲ sin (· П (n = 7 x ) cos(cnt) where ཆུ་ང་ and Сп =arrow_forwardThe Fourier sine series of the function is given by 3x f(x) = = if 0x5/3 5 if 5/3 x < 5 where bn b₁ = ☐ ∞ ƒ(2) ~ Σb, sin (n = 2) n=1 (품)arrow_forwardFind the values of a and b for which each function will be differentiable for all values of x on its domain. Note: Please write the answer in the form of ordered pairs (a, b). a² f(x) = x -2b, x ≤-1 b²x,x > −1 2ax²+62arrow_forward
- k. 1. |_ 1/2 S 0 cos(x-2) x3 √1+ e¯x ex dx dxarrow_forwardAttempt 6: 1 out of 2 parts have been answered correctly. Calculate the Taylor polynomials T2(x) and T3(x) centered at x = 7 for f(x) = ln(x + 1). T₂(x) T-(2) - in (8) - (½) (x-7) - (128)(x-7)2 8 Tз(x) = 2(x)+ In(8) + ½ ½ (x-7) - 128 (x-7)² + 1536 (x-7)3 8 Try again Next item Answers Attempt 6 of 6 Ei T The Weather Channel DELL UP % 8 9 205 54 # m E R D F G Harrow_forwardQuestion 3 1 pts By changing to spherical coordinates, calculate A = SSS, e(x²+y²+z²)³/2/2 dV, = 2x and y = where D is the region in the first octant between the planes y = above the cone z = /3(x² + y²), and between the spheres x² + y² + z² and x² + y² + z² = 4. Then sin(4A) is 3x, = 1 0.442 -0.438 -0.913 0.143 -0.502 -0.574 0.596 -0.444arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning