Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 1.49P
An amazing number of commercial and laboratory devices have been developed to measure fluid viscosity, as described in Refs. 29 and 49. Consider a concentric shaft, fixed axially and rotated inside the sleeve. Let the inner and outer cylinders have radii riand ronrespectively, with total sleeve length L. Let the rotational rate be
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
C1 (a). A lubricating oil having the dynamic viscosity of 0.058 poise and kinematic viscosity of 0.19 stokes. Calculate ) the density of oil in kg/m³, (ii) the weight density of oil in N/m3,(iii) the
specific gravity, and (iv) the specific volume in m3/kg.
C1 (b). Calculate the capillary effect in mm in a glass tube of 4.4 mm diameter, when immersed in (1) water (2) mercury. The values of surface tension in contact with air are 0.0756 N/m and 0.74
N/m respectively. The contact angle for water =0° and mercury = 130°. (
(Enter only the values by referring to the unit given. Also, upload the handwritten answers in the link provided)
C1(a).(1).The density of oil in kg/m3
C1(a). (ii) the weight density of oil in N/m3
C1(a). (iii) the specific gravity
C1(a). (iv) the specific volume in m?/kg
C1 (b). 1.The capillary effect (water) in mm
-----
C1 (b). 2.The capillary effect (mercury) in mm
C1 (a). A lubricating oil having the dynamic viscosity of 0.055 poise and kinematic viscosity of 0.17 stokes. Calculate (i) the density of oil in kg/m3, (ii) the weight density of oil in N/m3,(iii) the specific gravity, and (iv) the specific volume in m3/kg. C1 (b). Calculate the capillary effect in mm in a glass tube of 4.4 mm diameter, when immersed in (1) water (2) mercury. The values of surface tension in contact with air are 0.0737 N/m and 0.54 N/m respectively. The contact angle for water =00 and mercury =1300. (Enter only the values by referring to the unit given. Also, upload the handwritten answers in the link provided)
C1(a).(i).The density of oil in kg/m3
C1(a). (ii) the weight density of oil in N/m3
C1(a). (iii) the specific gravity
C1(a). (iv) the specific volume in m3/kg
C1 (b). 1.The capillary effect (water) in mm
C1 (b). 2.The capillary effect (mercury) in mm
A- Womersley number (a) of a human aorta is 20 and for the rabbit aorta is 17, the blood density is approximately the same across the species. The values of viscosity were 0.0035 Ns/m² for the human and 0.0040 Ns/m² for the rabbit. The diameter of the aorta is 2.0 cm for the man, and 0.7 cm for the rabbit, estimate the heart rate beats per minute (bpm) for both species
Chapter 1 Solutions
Fluid Mechanics
Ch. 1 - Prob. 1.1PCh. 1 - Table A.6 lists the density of the standard...Ch. 1 - For the triangular element in Fig, P1.3,show that...Ch. 1 - Sand, and other granular materials, appear to...Ch. 1 - The mean free path of a gas, l, is defined as the...Ch. 1 - Henri Darcy, a French engineer, proposed that the...Ch. 1 - Convert the following inappropriate quantities...Ch. 1 - Suppose we know little about the strength of...Ch. 1 - A hemispherical container, 26 inches in diameter,...Ch. 1 - The Stokes-Oseen formula [33] for drag force F on...
Ch. 1 - P1.11 In English Engineering units, the specific...Ch. 1 - For low-speed (laminar) steady flow through a...Ch. 1 - The efficiency ? of a pump is defined as the...Ch. 1 - Figure P1.14 shows the flow of water over a dam....Ch. 1 - The height H that fluid rises in a liquid...Ch. 1 - Algebraic equations such as Bernoulli's relation,...Ch. 1 - The Hazen-Williams hydraulics formula for volume...Ch. 1 - For small particles at low velocities, the first...Ch. 1 - In his study of the circular hydraulic jump formed...Ch. 1 - Books on porous media and atomization claim that...Ch. 1 - Aeronautical engineers measure the pitching moment...Ch. 1 - Prob. 1.22PCh. 1 - During World War II, Sir Geoffrey Taylor, a...Ch. 1 - Air, assumed to be an ideal gas with k = 1.40,...Ch. 1 - On a summer day in Narragansett, Rhode Island, the...Ch. 1 - When we in the United States say a car's tire is...Ch. 1 - Prob. 1.27PCh. 1 - Wet atmospheric air at 100 percent relative...Ch. 1 - Prob. 1.29PCh. 1 - P1.30 Repeat Prob. 1.29 if the tank is filled with...Ch. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - A tank contai as 9 kg of CO2at 20°C and 2.0 MPa....Ch. 1 - Consider steam at the following state near the...Ch. 1 - In Table A.4, most common gases (air, nitrogen,...Ch. 1 - Prob. 1.36PCh. 1 - A near-ideal gas has a molecular weight of 44 and...Ch. 1 - In Fig. 1.7, if the fluid is glycerin at 20°C and...Ch. 1 - Prob. 1.39PCh. 1 - Glycerin at 20°C fills the space between a hollow...Ch. 1 - An aluminum cylinder weighing 30 N, 6 cm in...Ch. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - One type of viscometer is simply a long capillary...Ch. 1 - A block of weight W slides down an inclined plane...Ch. 1 - A simple and popular model for two nonnewtonian...Ch. 1 - Data for the apparent viscosity of average human...Ch. 1 - A thin plate is separated from two fixed plates by...Ch. 1 - An amazing number of commercial and laboratory...Ch. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - The belt in Fig. P1.52 moves at a steady velocity...Ch. 1 - A solid tune of angle 2 , base r0, and density...Ch. 1 - A disk of radius R rotates at an angular velocity ...Ch. 1 - A block of weight W is being pulled over a table...Ch. 1 - The device in Fig. P1.56 is called a cone-plate...Ch. 1 - Extend the steady flow between a fixed lower plate...Ch. 1 - The laminar pipe flow example of Prob. 1.12 can be...Ch. 1 - A solid cylinder of diameter D, length L, and...Ch. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - P1.62 The hydrogen bubbles that produced the...Ch. 1 - Derive Eq. (1.33) by making a force balance on the...Ch. 1 - Pressure in a water container can be measured by...Ch. 1 - The system in Fig. P1.65 is used to calculate the...Ch. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - A solid cylindrical needle of diameter d, length...Ch. 1 - Derive an expression for the capillary height...Ch. 1 - A soap bubble of diameter D1coalesces with another...Ch. 1 - Early mountaineers boiled water to estimate their...Ch. 1 - A small submersible moves al velocity V, in fresh...Ch. 1 - Oil, with a vapor pressure of 20 kPa, is delivered...Ch. 1 - An airplane flies at 555 mi/h. At what altitude in...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - P1.78 Sir Isaac Newton measured the speed of sound...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Use Eq. (1.39) to find and sketch the streamlines...Ch. 1 - P1.82 A velocity field is given by u = V cos, v =...Ch. 1 - Prob. 1.83PCh. 1 - In the early 1900s, the British chemist Sir Cyril...Ch. 1 - Prob. 1.85PCh. 1 - A right circular cylinder volume v is to be...Ch. 1 - The absolute viscosity of a fluid is primarily a...Ch. 1 - Prob. 1.2FEEPCh. 1 - Helium has a molecular weight of 4.003. What is...Ch. 1 - An oil has a kinematic viscosity of 1.25 E-4 m2/s...Ch. 1 - Prob. 1.5FEEPCh. 1 - Prob. 1.6FEEPCh. 1 - FE1.7 Two parallel plates, one moving at 4 m/s...Ch. 1 - Prob. 1.8FEEPCh. 1 - A certain water flow at 20°C has a critical...Ch. 1 - Prob. 1.10FEEPCh. 1 - Sometimes we can develop equations and solve...Ch. 1 - When a person ice skates, the surface of the ice...Ch. 1 - Two thin flat plates, tilted at an angle a, are...Ch. 1 - Oil of viscosity and density drains steadily...Ch. 1 - Prob. 1.5CPCh. 1 - Prob. 1.6CPCh. 1 - Prob. 1.7CPCh. 1 -
C1.8 A mechanical device that uses the rotating...Ch. 1 - Prob. 1.9CPCh. 1 - A popular gravity-driven instrument is the...Ch. 1 - Mott [Ref. 49, p. 38] discusses a simple...Ch. 1 - A solid aluminum disk (SG = 2.7) is 2 in in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- First three onlyarrow_forwardA hydrodynamic journal bearing is subject to 2000 N load at a rotational speed of 2000 rpm Both bearing bore diameter and length are 40 mm. If radial clearance is 20 um and bearing is lubricated with an oil having viscosity 0.03 Pa-s, find the Sommerfield number of the bearing.arrow_forwardQuestion 3 A fluid is evaluated for its viscosity using a Brookfield viscometer. Collected data of rotational speed in rev/min and corresponding apparent viscosity in centipoises, respectively, are 20, 7230; 10, 12,060; 4, 25,200; and 2, 39,500. Is the fluid Newtonian or non-Newtonian? Calculate the flow behavior index, n, for this fluid.arrow_forward
- Please I want answer for these questions by typing them. Thanksarrow_forward(a). A lubricating oil having the dynamic viscosity of 0.055 poise and kinematic viscosity of 0.11 stokes. Calculate (i) the density of oil in kg/m³, (ii) the weight density of oil in N/m³, (i) the specific gravity, and (iv) the specific volume in m/kg.arrow_forwardFind the kinematic viscosity of an oil having density of 980kg/m^2 when at a certain point in the oil, the shear stress is 0.25 Pa and the velocity gradient is 0.3 m/s.arrow_forward
- Last three onlyarrow_forwardAn airplane that has a cross-sectional diameter D = 4 m of the front portion is to fly at a speed of 600 km/hr in air that has a density of 1.1 kg/m and dynamic viscosity of 1.27 x 10 Pa.s. A small size model of scale ratio (1/17) to be tested in a different fluid that has a dynamic viscosity 5 x 105 Pa .s and a density of 500 kg/m2. It is determined that the parameters that are important for this test are: diameter D, density, viscosity, velocity V, the length of the wings L and the drag force F. What must be the speed (m/s) of the model to Choose... ensure dynamical similitude? What must be the corresponding diameter of the model (cm)? Choose.. What is the number/s of dimensionless groups for this problem? Choose...arrow_forwardDon't try if you don't knowarrow_forward
- C1 (a). A lubricating oil having the dynamic viscosity of 0.058 poise and specific gravity of 1.11. Calculate (i) the density of oil in kg/m3, (ii) the weight density of oil in N/m3,(iii) the kinematic viscosity in stokes, and (iv) the specific volume in m³/kg. C1 (b). The capillary effect in a glass tube of 2.6 mm diameter, when immersed in (1) water and (2) mercury are 7.4 mm and -3.5 mm respectively. Calculate the value of surface tension in contact with air for water and mercury in N/m. Take, the contact angle for water =0° and mercury =130°. C1(a).(i).the density of oil in kg/m3 C1(a). (ii) the weight density of oil in N/m3 C1(a). (iii) the kinematic viscosity in stokes C1(a). (iv) the specific volume in m³/kg C1 (b). 1.the value of surface tension (water) in N/m C1 (b). 2. the value of surface tension (mercury) in N/marrow_forwardC1 (a). A lubricating oil having the dynamic viscosity of 0.056 poise and specific gravity of 1.17. Calculate (i) the density of oil in kg/m3, (ii) the weight density of oil in N/m3, (iii) the kinematic viscosity in stokes, and (iv) the specific volume in m3/kg. C1 (b). The capillary effect in a glass tube of 2.8 mm diameter, when immersed in (1) water and (2) mercury are 7.7 mm and -3.5 mm respectively. Calculate the value of surface tension in contact with air for water and mercury in N/m. Take, the contact angle for water =0° and mercury =130°. C1(a). (i).the density of oil in kg/m3 C1(a). (ii) the weight density of oil in N/m3 C1(a). (iii) the kinematic viscosity in stokes C1(a). (iv) the specific volume in m3/kg C1 (b). 1.the value of surface tension (water) in N/m C1 (b). 2. the value of surface tension (mercury) in N/marrow_forward3 what will be the kinematic viscosity of an oil having density 888 kg/m. The shear stress at a point in oil is 0.278 N/m and velocity gradient at that point is 0.2 per second.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY