Fluid Mechanics
Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.1CP

Sometimes we can develop equations and solve practical problems by knowing nothing more than the dimensions of the key parameters in the problem. For example, consider the heal Joss through a window in a building. Window efficiency is rated in terms of "R value," which has units of (ft2 · h · °F)/Btu. A certain manufacturer advertises a double-pane window with an R value of 2,5. The same company produces a. triple-pane window with an R value of 3.4. In either case the window dimensions are 3 ft by 5 ft. On a given winter day, the temperature difference between the inside and outside of the building is 45°F. (a) Develop an equation for the amount of heat lost in a given time period Δ t, through a window of area A, with a given R value, and temperature difference Δ T. How much heat (in Btu) is lost through the double-pane window in one 24-h period?

(b) How much heat (in Btu) is lost through the triple-pane window in one 24-h period?

(c) Suppose the building is heated with propane gas, which costs $3.25 per gallon. The propane burner is HO percent efficient. Propane has approximately 90,000 Btu of available energy per gallon. In that same 24-h period, how much money would a homeowner save per window by installing triple-pane rather than double-pane windows?

(d) Finally, suppose the homeowner buys 20 such triple-pane windows for the house. A typical winter has the equivalent of about 120 heating days at a temperature difference of 45°F. Each triple-pane window costs $85 more than the double-pane window. Ignoring interest and inflation, how many years will it take the homeowner to make up the additional cost of the triple-pane windows from heating bill savings?

Blurred answer
Students have asked these similar questions
Required information Sometimes equations can be developed and practical problems solved by knowing nothing more than the dimensions of the key parameters. For example, consider the heat loss through a window in a building. Window efficiency is rated in terms of R value, which has the unit of ft2-hr-°F/Btu. A certain manufacturer offers a double-pane window with R=2.5 and also a triple-pane window with R= 3.4. Both windows are 3.5 ft by 5 ft. On a given winter day, the temperature difference between the inside and outside is 45°F. Assume that a homeowner buys 20 such triple-pane windows for the house. A typical winter equals about 120 heating days at AT = 45°F. Each triple-pane window costs $85 more than a double-pane window. Ignoring interest and inflation, how many years will it take the homeowner to make up the additional cost the triple-pane windows from heating bill savings? years
The following table lists temperatures and specific volumes of water vapor at two pressures: p = 1.5 MPa v(m³/kg) p = 1.0 MPa T ("C) v(m³/kg) T ("C) 200 0.2060 200 0.1325 240 280 0.2275 0.2480 240 280 0.1483 0.1627 Data encountered in solving problems often do not fall exactly on the grid of values provided by property tables, and linear interpolation between adjacent table entries becomes necessary. Using the data provided here, estimate i. the specific volume at T= 240 °Č, p = 1.25 MPa, in m/kg ii. the temperature at p = 1.5 MPa, v = 0.1555 m/kg, in °C ii. the specific volume at T = 220 °C, p = 1.4 MPa, in m'/kg
As we explained in earlier chapters, the air resistance to the motion of a vehicle is something important that engineers investigate. The drag force acting on a car is determined experimentally by placing the car in a wind tunnel. The air speed inside the tunnel is changed, and the drag force acting on the car is measured. For a given car, the experimental data generally is represented by a single coefficient that is called drag coefficient. It is defined by the following relationship: F, where air resistance for a car that has a listed C, = drag coefficient (unitless) measured drag force (N) drag coefficient of 0.4 and width of 190 cm and height of 145 cm. Vary the air speed in the range of 15 m/s

Chapter 1 Solutions

Fluid Mechanics

Ch. 1 - P1.11 In English Engineering units, the specific...Ch. 1 - For low-speed (laminar) steady flow through a...Ch. 1 - The efficiency ? of a pump is defined as the...Ch. 1 - Figure P1.14 shows the flow of water over a dam....Ch. 1 - The height H that fluid rises in a liquid...Ch. 1 - Algebraic equations such as Bernoulli's relation,...Ch. 1 - The Hazen-Williams hydraulics formula for volume...Ch. 1 - For small particles at low velocities, the first...Ch. 1 - In his study of the circular hydraulic jump formed...Ch. 1 - Books on porous media and atomization claim that...Ch. 1 - Aeronautical engineers measure the pitching moment...Ch. 1 - Prob. 1.22PCh. 1 - During World War II, Sir Geoffrey Taylor, a...Ch. 1 - Air, assumed to be an ideal gas with k = 1.40,...Ch. 1 - On a summer day in Narragansett, Rhode Island, the...Ch. 1 - When we in the United States say a car's tire is...Ch. 1 - Prob. 1.27PCh. 1 - Wet atmospheric air at 100 percent relative...Ch. 1 - Prob. 1.29PCh. 1 - P1.30 Repeat Prob. 1.29 if the tank is filled with...Ch. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - A tank contai as 9 kg of CO2at 20°C and 2.0 MPa....Ch. 1 - Consider steam at the following state near the...Ch. 1 - In Table A.4, most common gases (air, nitrogen,...Ch. 1 - Prob. 1.36PCh. 1 - A near-ideal gas has a molecular weight of 44 and...Ch. 1 - In Fig. 1.7, if the fluid is glycerin at 20°C and...Ch. 1 - Prob. 1.39PCh. 1 - Glycerin at 20°C fills the space between a hollow...Ch. 1 - An aluminum cylinder weighing 30 N, 6 cm in...Ch. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - One type of viscometer is simply a long capillary...Ch. 1 - A block of weight W slides down an inclined plane...Ch. 1 - A simple and popular model for two nonnewtonian...Ch. 1 - Data for the apparent viscosity of average human...Ch. 1 - A thin plate is separated from two fixed plates by...Ch. 1 - An amazing number of commercial and laboratory...Ch. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - The belt in Fig. P1.52 moves at a steady velocity...Ch. 1 - A solid tune of angle 2 , base r0, and density...Ch. 1 - A disk of radius R rotates at an angular velocity ...Ch. 1 - A block of weight W is being pulled over a table...Ch. 1 - The device in Fig. P1.56 is called a cone-plate...Ch. 1 - Extend the steady flow between a fixed lower plate...Ch. 1 - The laminar pipe flow example of Prob. 1.12 can be...Ch. 1 - A solid cylinder of diameter D, length L, and...Ch. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - P1.62 The hydrogen bubbles that produced the...Ch. 1 - Derive Eq. (1.33) by making a force balance on the...Ch. 1 - Pressure in a water container can be measured by...Ch. 1 - The system in Fig. P1.65 is used to calculate the...Ch. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - A solid cylindrical needle of diameter d, length...Ch. 1 - Derive an expression for the capillary height...Ch. 1 - A soap bubble of diameter D1coalesces with another...Ch. 1 - Early mountaineers boiled water to estimate their...Ch. 1 - A small submersible moves al velocity V, in fresh...Ch. 1 - Oil, with a vapor pressure of 20 kPa, is delivered...Ch. 1 - An airplane flies at 555 mi/h. At what altitude in...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - P1.78 Sir Isaac Newton measured the speed of sound...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Use Eq. (1.39) to find and sketch the streamlines...Ch. 1 - P1.82 A velocity field is given by u = V cos, v =...Ch. 1 - Prob. 1.83PCh. 1 - In the early 1900s, the British chemist Sir Cyril...Ch. 1 - Prob. 1.85PCh. 1 - A right circular cylinder volume v is to be...Ch. 1 - The absolute viscosity of a fluid is primarily a...Ch. 1 - Prob. 1.2FEEPCh. 1 - Helium has a molecular weight of 4.003. What is...Ch. 1 - An oil has a kinematic viscosity of 1.25 E-4 m2/s...Ch. 1 - Prob. 1.5FEEPCh. 1 - Prob. 1.6FEEPCh. 1 - FE1.7 Two parallel plates, one moving at 4 m/s...Ch. 1 - Prob. 1.8FEEPCh. 1 - A certain water flow at 20°C has a critical...Ch. 1 - Prob. 1.10FEEPCh. 1 - Sometimes we can develop equations and solve...Ch. 1 - When a person ice skates, the surface of the ice...Ch. 1 - Two thin flat plates, tilted at an angle a, are...Ch. 1 - Oil of viscosity and density drains steadily...Ch. 1 - Prob. 1.5CPCh. 1 - Prob. 1.6CPCh. 1 - Prob. 1.7CPCh. 1 - C1.8 A mechanical device that uses the rotating...Ch. 1 - Prob. 1.9CPCh. 1 - A popular gravity-driven instrument is the...Ch. 1 - Mott [Ref. 49, p. 38] discusses a simple...Ch. 1 - A solid aluminum disk (SG = 2.7) is 2 in in...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY