Under conditions for which the same room temperatureis maintained by a heating or cooling system, it is not uncommonfor a person to feel chilled in the winter but comfortable in the summer. Provide a plausible explanation for this situation (with supporting calculations)by considering a room whose air temperature is maintained at 20°C throughout the year, while the walls ofthe room are nominally at 27°C and 14°C in the summer and winter, respectively. The exposed surface of aperson in the room may be assumed to be at a temperature of 32°C throughout the year and to have an emissivity of 0.90. The coefficient associated with heattransfer by natural convection between the person andthe room air is approximately
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Fundamentals of Heat and Mass Transfer
- The air-conditioning system in a Chevrolet van for use in desert climates is to be sized. The system is to maintain an interior temperature of 20C when the van travels at 100 km/h through dry air at 30C at night. If the top of the van is idealized as a flat plate 6 m long and 2 m wide and the sides as flat plates 3 m tall and 6 m long, estimate the rate at which heat must be removed from the interior to maintain the specifiedarrow_forward1.29 A spherical interplanetary probe with a 30-cm diameter contains electronic equipment that dissipates 100 W. If the probe surface has an emissivity of 0.8, what is its surface temperature in outer space? State your assumptions in the calculations.arrow_forwardUnder conditions for which the same room temperature is maintained by a heating or cooling system, it is not uncommon for a person to feel chilled in the winter but comfortable in the summer. Consider a room whose air temperature is maintained at 22°C throughout the year, while the walls of the room are nominally at 26°C and 16°C in the summer and winter, respectively. The exposed surface of a person in the room may be assumed to be at a temperature of 32°C throughout the year and to have an emissivity of 0.90. The coefficient associated with heat transfer by natural convection between the person and the room air is approximately 2 W/m2-K. Calculate the following. Heat flux due to convection: i W/m? Heat flux due to radiation in the summer: gad W/m2 i Heat flux due to radiation in the winter: Trad W/m? iarrow_forward
- Under conditions for which the same room temperature is maintained by a heating or cooling system, it is not uncommon for a person to feel chilled in the winter but comfortable in the summer. Consider a room whose air temperature is maintained at 22°C throughout the year, while the walls of the room are nominally at 24°C and 12°C in the summer and winter, respectively. The exposed surface of a person in the room may be assumed to be at a temperature of 32°C throughout the year and to have an emissivity of 0.90. The coefficient associated with heat transfer by natural convection between the person and the room air is approximately 2 W/m2-K. Calculate the following. Heat flux due to convection: qbonv W/m? Heat flux due to radiation in the summer: Trad i W/m? Heat flux due to radiation in the winter: gad W/m? i Physical Properties Mathematical Functionsarrow_forwardHi, can you help me to answer this question using the first law of thermodynamics formula to explain this event? On a hot summer day, a student turns his fan on when he leaves his room in themorning. When he returns in the evening will the room be warmer or cooler than theneighborouing rooms ? Explain your answer using the first law of thermodynamics.Assume ALL doors and windows are kept closed.arrow_forwardHi, can you help me to answer this question using the first law of thermodynamics? On a hot summer day a student turns his fan on when he leaves his room in themorning. When he returns in the evening will the room be warmer or cooler than theneighborouing rooms ? Explain your answer using the first law of thermodynamics.Assume ALL doors and windows are kept closed.arrow_forward
- A concrete wall, which has a surface area of 20 m2 and is 0.30 m thick, separates conditioned room air from ambient air. The temperature of the inner surface of the wall is maintained at 25°C, and the thermal conductivity of the concrete is 1 W/mK.(a) Determine the rate of heat loss through the wall for outer surface temperatures ranging from −15°C to 38°C, which correspond to winter and summer extremes, respectively. Display your results graphically.(b) On your graph, also plot the rate of heat loss as a function of the outer surface temperature for wall materials having thermal conductivities of 0.75 and 1.25 W/m⋅K. Explain the family of curves you have obtainedarrow_forwardIt is designed in such a way that the internal temperature of a commercial heat treatment furnace can reach up to 165 oC. All surfaces of the furnace consist of firebrick (10 cm), insulation material and sheet metal (3mm) from the inside out. Given that the outdoor temperature is 22 oC, the outer sheet will be allowed to go up to 35 oC, which is a temperature that will not disturb in contact with hands. In this case, determine the insulation material thickness to be used. The thermal conductivity coefficient of the insulation material is insulation 0.066 W / m oC, 60 W / m oC for sheet metal and 115 W / m oC for firebrick. Indoor heat transfer coefficient will be accepted as 25 W / m2 oC and 12 W / m2 oC for outdoor environment.arrow_forwardHeat transferarrow_forward
- Pravinbhaiarrow_forwardEstimate the rate of heat transfer (J/s) from a 50.6°C sphere which has an emissivity of 0.2 if it is suspended in a cold volume maintained at -10.7°C. The sphere has a diameter of 0.2m. Reduce your answer in to two decimal point.arrow_forwardDuring hot summer weather, many people put “koozies” around their beverages to keep the drinks cold. In addition to preventing a warm hand from heating the container through conduction, what other mechanisms slow the process of warming beverages?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning