You are now given a problem to test your knowledge of this chapter's objectives. Refer to the antenna azimuth position control system shown in Appendix A2, Configuration 2. Assume an open-loop system (feedback path disconnected) and do the following: a. Predict the open-loop angular velocity response of the power amplifier, motor, and load to a step voltage at the input to the power amplifier. b. Find the damping ratio and natural frequency of the open-loop system. c. Derive the open-loop angular velocity response of the power amplifier, motor, and load to a step-voltage input using transfer functions. d. e. State Space SS MATLAB ML Obtain the open-loop state and output equations. Use MATLAB to obtain a plot of the open-loop angular velocity response to a step-voltage input. You are now given a problem to test your knowledge of this chapter's objectives. Refer to the antenna azimuth position control system shown in Appendix A2, Configuration 2. Assume an open-loop system (feedback path disconnected) and do the following: a. Predict the open-loop angular velocity response of the power amplifier, motor, and load to a step voltage at the input to the power amplifier. b. Find the damping ratio and natural frequency of the open-loop system. c. Derive the open-loop angular velocity response of the power amplifier, motor, and load to a step-voltage input using transfer functions. d. e. State Space SS MATLAB ML Obtain the open-loop state and output equations. Use MATLAB to obtain a plot of the open-loop angular velocity response to a step-voltage input.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

only a, b and c please

You are now given a problem to test your knowledge of this chapter's objectives.
Refer to the antenna azimuth position control system shown in Appendix A2,
Configuration 2. Assume an open-loop system (feedback path disconnected) and
do the following:
a. Predict the open-loop angular velocity response of the power amplifier,
motor, and load to a step voltage at the input to the power amplifier.
b. Find the damping ratio and natural frequency of the open-loop system.
c. Derive the open-loop angular velocity response of the power amplifier, motor,
and load to a step-voltage input using transfer functions.
d.
e.
State Space
SS
MATLAB
ML
Obtain the open-loop state and output equations.
Use MATLAB to obtain a plot of the open-loop angular
velocity response to a step-voltage input.
Transcribed Image Text:You are now given a problem to test your knowledge of this chapter's objectives. Refer to the antenna azimuth position control system shown in Appendix A2, Configuration 2. Assume an open-loop system (feedback path disconnected) and do the following: a. Predict the open-loop angular velocity response of the power amplifier, motor, and load to a step voltage at the input to the power amplifier. b. Find the damping ratio and natural frequency of the open-loop system. c. Derive the open-loop angular velocity response of the power amplifier, motor, and load to a step-voltage input using transfer functions. d. e. State Space SS MATLAB ML Obtain the open-loop state and output equations. Use MATLAB to obtain a plot of the open-loop angular velocity response to a step-voltage input.
You are now given a problem to test your knowledge of this chapter's objectives.
Refer to the antenna azimuth position control system shown in Appendix A2,
Configuration 2. Assume an open-loop system (feedback path disconnected) and
do the following:
a. Predict the open-loop angular velocity response of the power amplifier,
motor, and load to a step voltage at the input to the power amplifier.
b. Find the damping ratio and natural frequency of the open-loop system.
c. Derive the open-loop angular velocity response of the power amplifier, motor,
and load to a step-voltage input using transfer functions.
d.
e.
State Space
SS
MATLAB
ML
Obtain the open-loop state and output equations.
Use MATLAB to obtain a plot of the open-loop angular
velocity response to a step-voltage input.
Transcribed Image Text:You are now given a problem to test your knowledge of this chapter's objectives. Refer to the antenna azimuth position control system shown in Appendix A2, Configuration 2. Assume an open-loop system (feedback path disconnected) and do the following: a. Predict the open-loop angular velocity response of the power amplifier, motor, and load to a step voltage at the input to the power amplifier. b. Find the damping ratio and natural frequency of the open-loop system. c. Derive the open-loop angular velocity response of the power amplifier, motor, and load to a step-voltage input using transfer functions. d. e. State Space SS MATLAB ML Obtain the open-loop state and output equations. Use MATLAB to obtain a plot of the open-loop angular velocity response to a step-voltage input.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,