Solutions for FLUID MECHANICS FUNDAMENTALS+APPS
Problem 2CP:
Define internal, external, and open-channel flows.Problem 3CP:
Define incompressible flow and in compressible fluid. Must the flow of a compressible fluid...Problem 4CP:
Consider the flow of air over the wings of an aircraft. Is flow external? How about the flow of...Problem 5CP:
What is forced flow? How does it differ from natural flow? Is flow caused by winds forced or natural...Problem 7CP:
When an airplane is flying at a constant speed relative to the ground, is correct to say that the...Problem 8CP:
Consider the flow of air at a Mach number of 0.12. Should this flow be approximated as being...Problem 9CP:
What is the no-slip condition? What causes it?Problem 11CP:
What is a steady-flow process?Problem 13CP:
What are system, surroundings, and boundary?Problem 14CP:
When analyzing the acceleration of gases as they flow through a nozzle, what would you choose as...Problem 16CP:
You are to understand how a reciprocating air compressor (a piston, cylinder device) woks. What...Problem 18CP:
In a news ankle, is stated that a recently developed geared turbofan engine produces 15,000 pounds...Problem 19CP:
Explain why the light-year has the dimension of length.Problem 20CP:
What is the net force acting on a car cruising at a constant velocity of 70 km/h (a) on a level road...Problem 21P:
A man goes to a traditional market to buy a steak for diner. He finds a 12-oz steak (1 Ibm = 16 oz)...Problem 22P:
What is the weight, in N, of an object with a mass of 150 kg at a location where g=9.6m/s2 ?Problem 24P:
Determine the mass and the weight of the air contained in a room whose dimensions are 3m5m7m ....Problem 25P:
A 3-kW resistance heater a water beater temperature for 2 hours to raise the water temperature to...Problem 26EP:
A195-Ibm astronaut took his bathroom scale (a spring scale) and a beam scale (compares masses) to...Problem 27P:
The acceleration of high-speed aircraft sometimes expressed g’s (in multiples of the standard...Problem 28P:
A 10-kg rock is thrown upward with a force of 280 N at a location 1ere the local gravitational...Problem 30P:
The value of the gravitational acceleration g decreases with elevation from 9.807 m/s2 at sea level...Problem 31P:
At 45° latitude: the gravitational acceleration as a function of elevation z above sea level is...Problem 32P:
1-32 The gravitational constant g is 9.807m/s2 at sea level, but it decreases as you go up in...Problem 33P:
On average, an adult person breathes in about 7.0 liters of air per minute. Assuming atmospheric...Problem 34P:
While solving a problem, a person ends up with equation E=16kJ+7kJ/kg at some stage. Here E is the...Problem 35P:
An airplane flies horizontally at 70m/s . Its propeller delivers 1500 N of thrust (forward force) to...Problem 36P:
If the airplane of Prob. 1-35 weighs 17 lbf, estimate the lift force produced by the airplane’s...Problem 37EP:
The boom of a fire truck raises a fireman (and his equipment-total weight 280 Ibf) 40 ft into the...Problem 38P:
A 6-kg plastic tank that has a volume of 0.18m3 is filled with liquid water. Assuming the density of...Problem 39P:
Water at 15°C from a garden hose fills a 1.5 L container in 2.85 s. Using unity conversion ratios...Problem 40P:
A forklift raises a 90.5 kg crate 1.80 m. (a) Showing all your work and using unity conversion...Problem 41P:
The gas tank of a car is filled with a nozzle that discharge gasoline at a constant flow rate. Based...Problem 42P:
A pool of volume V (in m3) is to filled with water using a hose of diameter D (in m). If the average...Problem 43P:
Based on unit considerations alone, show that the power needed to accelerate a car of mass m (in kg)...Problem 44CP:
What is the importance of modeling in engineering? How are the mathematical models for engineering...Problem 45CP:
What is the difference between the analytical and experimental approach to engineering problems?...Problem 46CP:
When modeling an engineering process, how is the right choice made between a simple but crude and a...Problem 47CP:
What is the difference between precision and accuracy? Can a measurement be very precise but...Problem 49CP:
What is the value of the engineering software packages in (a) engineering education and (b)...Problem 55P:
The weight of bodies may change somewhat from one location to another as a result of the variation...Problem 56EP:
The reactive force developed by a jet to push an airplane forward is called thrust, and the thrust...Problem 58P:
An important design consideration in two-phase pipe flow of solid-liquid mixtures is the terminal...Problem 59P:
Consider the flow of air through a wind turbine whose blades sweep an area of diameter D (in m). The...Problem 60P:
A tank is filled with oil whose density is =850 kg/m3. If the volume of the tank is v=2m3 ,...Problem 61P:
If mass, heat, and work are not allowed to cross the boundaries of a system, the system is called...Problem 62P:
The speed of an aircraft is given to be 260 m/s in air. If the speed of sound at that 330m/s, the...Problem 65P:
The speed of an aircraft is given to be 950 km/h. If the speed of sound at that location is 315 m/s,...Problem 66P:
The weight of a 10-kg mass at sea level is (a) 9.81 N (b) 32.2 kgf (c) 98.1 N (d)10 N (e) 100 NProblem 67P:
The weight of a 1 -Ibm mass is (a) 1Ibmft/s2 (b) 9.81 Ibf (c)9.81 N (d) 32.2 lbf (e) 1 lbfProblem 68P:
A hydroelectric power plant operates at its rated power of 12 MW. If the plant has produced 26...Problem 69P:
Write an essay on the various mass- and volume-measurement devices used throughout history. Also,...Problem 70P:
Search the Internet to find out how to properly add or subtract numbers while taking into...Browse All Chapters of This Textbook
Chapter 1 - Introduction And Basic ConceptsChapter 2 - Properties Of FluidsChapter 3 - Pressure And Fluid StaticsChapter 4 - Fluid KinematicsChapter 5 - Bernoulli And Energy EquationsChapter 6 - Momentum Analysis Of Flow SystemsChapter 7 - Dimensional Analysis And ModelingChapter 8 - Internal FlowChapter 9 - Differential Analysis Of Fluid FlowChapter 10 - Approximate Solutions Of The Navier–stokes Equation
Sample Solutions for this Textbook
We offer sample solutions for FLUID MECHANICS FUNDAMENTALS+APPS homework problems. See examples below:
Chapter 1, Problem 1CPChapter 1, Problem 23PChapter 1, Problem 31PChapter 1, Problem 55PChapter 1, Problem 71PChapter 2, Problem 1CPChapter 2, Problem 19PChapter 2, Problem 39PChapter 2, Problem 49P
Given information: The pressure of the air is 95 kPa, the initial temperature is 20°C, the final...Chapter 2, Problem 77PChapter 2, Problem 85PChapter 2, Problem 87PGiven information: The diameter of glass tube is 0.018 in, the contact angle with the glass is 140°,...Chapter 2, Problem 118PChapter 2, Problem 123PChapter 2, Problem 127PChapter 2, Problem 128PGiven: The shear stress used for the Herschel-Bulkley constitute model is τ=τν+K( du dy)m, Yield...Chapter 2, Problem 132PChapter 3, Problem 1CPChapter 3, Problem 26PChapter 3, Problem 48PChapter 3, Problem 49PChapter 3, Problem 51PChapter 3, Problem 55PChapter 3, Problem 67PChapter 3, Problem 72PChapter 3, Problem 78PChapter 3, Problem 79EPChapter 3, Problem 80PChapter 3, Problem 81PChapter 3, Problem 85PChapter 3, Problem 86PChapter 3, Problem 87PChapter 3, Problem 90PChapter 3, Problem 135PThe radius of the semi-circular gate is 0.5 m, specific gravity of fluid in section 1 is 0.91,...Chapter 3, Problem 146PChapter 4, Problem 1CPChapter 4, Problem 23PGiven information: The flow is symmetric about x axis. Write the expression for the two-dimensional...Given information: The fluid particle is located on the centre line. Write the expression for the...Chapter 4, Problem 58PChapter 4, Problem 66PThe shear strain rate is half of the rate of decrease of the angle between two perpendicular lines...The vector field of flow is V⇀=k(x2−y2)i⇀−2kxyj⇀ and the radius of curvature of streamline is R=[1+...Chapter 4, Problem 98PChapter 4, Problem 101PWrite the expression for the two dimensional Poiseuille flow. u=12μdPdx(y2−hy). Here, the distance...Given information: The velocity component along the x direction is...Chapter 4, Problem 120PChapter 4, Problem 121PChapter 5, Problem 1CPChapter 5, Problem 53PChapter 5, Problem 55PChapter 5, Problem 57EPChapter 5, Problem 62PChapter 5, Problem 80PChapter 5, Problem 84PChapter 5, Problem 88PChapter 5, Problem 89PChapter 5, Problem 98PChapter 5, Problem 109PChapter 5, Problem 114PChapter 5, Problem 115PChapter 5, Problem 116PChapter 5, Problem 136PChapter 6, Problem 1CPChapter 6, Problem 23PGiven information: The volume flow rate of the water is 35 L/s, the discharge area for the smaller...Chapter 6, Problem 57PChapter 6, Problem 67PChapter 6, Problem 69PChapter 6, Problem 70PChapter 6, Problem 77PChapter 6, Problem 78PChapter 6, Problem 89PGiven information: The length of the slit is 1.2 m, width of the rectangular slit is 5 mm, water...Chapter 6, Problem 96PChapter 7, Problem 1CPGiven information: The shaft power is W˙, the angular velocity is ω, the fluid density is ρ, the...Chapter 7, Problem 53PChapter 7, Problem 62PChapter 7, Problem 67PThe angular velocity is ω, the fluid density is ρ, the acceleration due to gravity id g, the radius...Chapter 7, Problem 74PGiven information: force pressure gradient =dPdxFlow : steady+ incomprssible down stream distance...In M-L-T system, force = mass×accelerationF = m × a{F} = {mass × meter sec 2}{F} = {M × L t 2}{F} =...Given Information: Top plate speed, Vtop Bottom plate speed, Vbottom Steady flow, incompressible, 2...Chapter 7, Problem 112PChapter 7, Problem 113PChapter 7, Problem 118PGiven information: The following figure shows that two parallel flat plates. Figure-( 1) Assume, at...Chapter 8, Problem 1CPChapter 8, Problem 61PChapter 8, Problem 73PGiven information: The temperature of the water is 70 °F, density of the water is 62.3 lbm/ft3,...Given information: The air discharge rate is 1.2 ft3/s, diameter of the vent is 5 in, length of the...Given information: The temperature of oil is 20°C, the height of cylindrical reservoir is 20 cm, the...Given information: The temperature of the water is 110°C, density of the water is 950.6 kg/m3,...Chapter 8, Problem 94PChapter 8, Problem 96PGiven Information: The diameter of the pipe is 6 cm, the length of the pipe is 33 m, the inlet...Chapter 8, Problem 136PChapter 8, Problem 137PGiven information: The diameter of the cast iron pipe is 0.35 m and the length of the cast iron pipe...Given information: The diameter of tank 1 is 30 cm, diameter of tank 2 is 12 cm, diameter of orifice...Chapter 8, Problem 153PGiven information: The swimming pool diameter is 10 m, the swimming pool height is 2 m, the...Chapter 8, Problem 159PThe following figure represents the branched pipes. Figure-(1) Write the expression for the area of...Chapter 9, Problem 1CPChapter 9, Problem 16PGiven information: The incompressible flow filed for which the velocity u component is u=ax2−bxy,...Given information: The velocity component in θ direction is equal to 0. Write the expression for...Given information: The diameter at the entrance of the nozzle is 0.50 in, the diameter at exit of...Chapter 9, Problem 87PChapter 9, Problem 93PGiven information: The flow is steady, laminar, two-dimensional and incompressible. The flow is...Chapter 9, Problem 101PChapter 9, Problem 102PChapter 9, Problem 103PGiven information: The assumptions made are stated below: The flow is parallel, steady, and laminar....Chapter 9, Problem 123PChapter 10, Problem 1CPGiven information: Actual stokes law is FD=3πμDV+(9π/16)ρV2D2. Three aluminum balls of diameters 2...First, we need to use continuity equation for velocity component. From continuity equation, We have,...Chapter 10, Problem 29PGiven: h0=sleeper pad=11000h1=final height of sleeper=12000 lenght=1.0 Concept Used: Convergence of...Chapter 10, Problem 62PChapter 10, Problem 69PChapter 10, Problem 90PChapter 10, Problem 91PChapter 10, Problem 97PChapter 10, Problem 108PChapter 10, Problem 110PChapter 10, Problem 113PGiven information: The density of air is 0.8588 kg/m3, the temperature of air is −50°C the pressure...Chapter 11, Problem 1CPChapter 11, Problem 41EPChapter 11, Problem 43PChapter 11, Problem 48PChapter 11, Problem 68PChapter 11, Problem 88PChapter 11, Problem 96PChapter 11, Problem 101EPGiven information: Length=3 m Diameter=0.5 m Atmospheric pressure=87 kPa Temperature=20∘C=295 K...Given information: Mass of tractor=17,000 kg Frontal area=9.2 m2 Rolling resistance coefficient=0.05...Given information: Diameter=2 mm ρs=2600 kgm3ρf=1274 kgm3 Vexperimental=3.2 mms μ=1 kgm⋅s Concept...Given information: The diameter of the first aluminum ball is 2 mm, the diameter of the second...Given information: The diameter of the ball is 2 mm, the density of the ball is 2700 kg/m3, the...Chapter 12, Problem 1CPGiven: Air pressure, air temperature and Mach number are 14 psia, 40°F and 2 respectively. Flow...Given: The upstream the shock is given by, Pressure of air P1=58kPa Temperature of air T1=270K Mach...Given: The properties of air are: k = 1.4R = 0.287 kJ/kg·K,cp = 1.005 kJ/kg·K The properties of...Chapter 12, Problem 102PGiven: Temperature T1 = 480R Velocity V1=100 m/s Pressure P1=8 psia Mach number Ma1=2.0 Force...Chapter 12, Problem 126EPGiven: Ambient temperature at inlet T1= 500 K Stagnation Pressure P01=P1=220 psia Exit pressure P2 =...Given: The properties of air: R =0.280 kJ/kg.K cp=1.005 kJ/kg.K k=1.33 Inlet Temperature T1=510K...Given: Mach number k=1.2,1.4 and 1.6 range of 0≤Ma≤1. Calculation: Equation is given by m. R T 0...Chapter 13, Problem 1CPGiven Information: The water flow rate is 10 m3/s and the bottom slope is 0.0015 Write the...Given Information: The figure below represents the cross -section of three channels. Figure-(1) The...Given Information: The figure below shows the cross -section of the channel. Figure-(1) The bottom...Chapter 13, Problem 61PChapter 13, Problem 85PGiven information: Velocity of water flow is 10 m/s, the flow depth is 0.65 m, the bump height is 30...Given Information: The flow depth of upstream weir is 5 ft and the height of the gate opening is 1.1...Given information: The flow depth before the jump is 0.7 m, the flow depth after the jump is 5 m,...Given information: The channel angle is 0.5°. Write the expression for flow rate using manning's...Chapter 13, Problem 140PGiven information: Water is flowing through a sluice gate, the velocity of water before reaching the...Chapter 13, Problem 143PChapter 13, Problem 144PGiven information: The height of bump is 20 cm, initial velocity of flow is 1.25 m/s, the flow depth...Chapter 13, Problem 167PChapter 14, Problem 1CPChapter 14, Problem 35EPChapter 14, Problem 36EPChapter 14, Problem 41PChapter 14, Problem 47EPChapter 14, Problem 55EPChapter 14, Problem 56EPChapter 14, Problem 57EPChapter 14, Problem 61PChapter 14, Problem 62PGiven information: The number of rotations of centrifugal pump is 750 rpm. The inlet radius is 12 cm...Given information: The number of rotations of centrifugal pump is 750 rpm. The inlet radius is 12 cm...Given information: The diameter of the turbine A is 1.50 mand the number of rotation for the turbine...Chapter 14, Problem 123PChapter 15, Problem 1CP
More Editions of This Book
Corresponding editions of this textbook are also available below:
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9789339204655
Fluid Mechanics Fundamentals and Applications - With Access
3rd Edition
ISBN: 9780077707569
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Loose Leaf For Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780077595463
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780077595418
FLUID MECH.:FUND....(LL)-W/CODE>CUSTOM<
3rd Edition
ISBN: 9781260115055
Connect 1 Semester Access Card For Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780077670245
FLUID MECHANICS:FUND.+APPL.(LL)>CUSTOM<
3rd Edition
ISBN: 9781260244342
FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Loose Leaf For Fluid Mechanics: Fundamentals And Applications
4th Edition
ISBN: 9781260152067
FLUID MECHANICS--ACCESS CARD
4th Edition
ISBN: 9781264623600
FLUID MECHANICS FUND.+APPL.
4th Edition
ISBN: 9781260602616
FLUID MECHANICS ACCESS
4th Edition
ISBN: 9781260792744
Package: Loose Leaf For Fluid Mechanics Fundamentals & Applications With 1 Semester Connect Access Card
4th Edition
ISBN: 9781260170160
FLUID MECHANICS LOOSE LEAF W/ CONNECT
4th Edition
ISBN: 9781260855463
Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
FLUID MECHANICS-W/ACCESS
18th Edition
ISBN: 9781307018431
EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
FLUID MECHANICS LL W/ACCESS
4th Edition
ISBN: 9781260256505
Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259877827
FLUID MECHANICS CONNECT ACCESS
4th Edition
ISBN: 9781264049509
FLUID MECHANICS LOOSELEAF W/CONNECT
4th Edition
ISBN: 9781264049837
Connect Access for Fluid Mechanics
4th Edition
ISBN: 9781259877759
FLUID MECHANICS (LL) W/CONNECT
4th Edition
ISBN: 9781264123728
FLUID MECHANICS FUND. (LL)-W/ACCESS
4th Edition
ISBN: 9781266016042
Fluid Mechanics with Student Resources DVD
2nd Edition
ISBN: 9780077295462
Related Mechanical Engineering Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.