(a)
Interpretation:
The element
Concept Introduction:
Metals are elements that have characteristic properties of thermal conductivity, luster, electrical conductivity, and malleability. Except mercury, the physical state of all other metals is solids. They have very high melting points and high density.
Nonmetals are elements that are characterized by the absence of properties like thermal conductivity, luster, electrical conductivity, and malleability. Mostly nonmetals are gases. Only bromine is present as liquid in room temperature. The density of nonmetals is low and they have lower melting points than metals.
Metalloids are elements that possess both metallic and nonmetallic properties.
Element present in the periodic table are represented by a unique name and a chemical symbol. The
(b)
Interpretation:
The element
Concept Introduction:
Refer part (a).
(c)
Interpretation:
The element
Concept Introduction:
Refer part (a).
(d)
Interpretation:
The element
Concept Introduction:
Refer part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter F Solutions
Chemical Principles: The Quest for Insight
- Assume that the radius of Earth is 6400 km, the crust is 50. km thick, the density of the crust is 3.5 g/cm3, and 25.7% of the crust is silicon by mass. Calculate the total mass of silicon in the crust of Earth.arrow_forwardGiven that the density of argon is 1.78 g/L under standard conditions of temperature and pressure, how many argon atoms are present in a room with dimensions 4.0 m 5.0 m 2.4 m that is filled with pure argon under these conditions of temperature and pressure?arrow_forwardWhat is the mass of fish, in kilograms, that one would have to consume to obtain a fatal dose of mercury, if the fish contains 30 parts per million of mercury by weight? (Assume that all the mercury from the fish ends up as mercury (II) chloride in the body and that a fatal dose is 0.20 g of HgCl2.) How many pounds of fish is this?arrow_forward
- Chlorine exists mainly as two isotopes, 37Cl and 33Cl. Which is more abundant? How do you know?arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forward4-102 Aspartame, an artificial sweetener used as a sugar substitute in some foods and beverages, has the molecular formula C14H18N2O5. (a) How many mg of aspartame are present in 3.72 × 1026 molecules of aspartame? (b) Imagine you obtain 25.0 mL of aspartame, which is known to have a density of 1.35 g/mL. How many molecules of aspartame are present in this volume? (c) How many hydrogen atoms are present in 1.00 mg of aspartame? (d) Complete the skeletal structure of aspartame, where all the bonded atoms are shown but double bonds, triple bonds, and/or lone pairs are missing. (e) Identify the various types of geometries present in each central atom of aspartame using VSEPR theory. (f) Determine the various relative bond angles associated with each central atom of aspartame using VSEPR theory. (g) What is the most polar bond in aspartame? (h) Would you predict aspartame to be polar or nonpolar? (i) Is aspartame expected to possess resonance? Explain why or why not. (j) Consider the combustion of aspartame, which results in formation of NO2(g) as well as other expected products. Write a balanced chemical equation for this reaction. (k) Calculate the weight of C02(g) that can be prepared from 1.62 g of aspartame mixed with 2.11 g of oxygen gas.arrow_forward
- 3.117 For the oxides of iron, FeO, Fe2O3, and Fe3O4, describe how you would determine which has the greatest percentage by mass of oxygen. Would you need to look up any information to solve this problem?arrow_forwardHow many moles of sulfuric acid,H2SO4, are neutralized by 23.46 mL of 0.238 M NaOH(aq)? Begin by writing a balanced equation for this neutralization reactionarrow_forwardGive the name and formula of the compound formed from the following elements: (a) cesium and bromine; (b) sulfur and bar-ium; (c) calcium and fluorine.arrow_forward
- The hardness of water (hardness count) is usually expressed in parts per million (by mass) of CaCO3, which is equivalent to milligrams of CaCO3 per liter of water. What is the molar concentration of Ca2+ ions in a water sample with a hardness count of 175 mg CaCO3/L? Write the answer in scientific notation like this 1.23 x 10^4 M.arrow_forwardMg(OH)2(s)+2HNO3(aq)→ the balanced chemical formula?arrow_forwardThe elements of Group 1-B (Cu, Ag, and Au) are sometimes referred to as the “coinage metals.” Why? What properties do they have that make them particularly useful for this purpose?arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning