Statics and Mechanics of Materials (5th Edition)
Statics and Mechanics of Materials (5th Edition)
5th Edition
ISBN: 9780134382593
Author: Russell C. Hibbeler
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 1RP

The elastic portion of the tension stress-strain diagram for an aluminum alloy is shown in the figure. The specimen used for the test has a gage length of 2 in. and a diameter of 0,5 in. When the applied load is 9 kip, the new diameter of the specimen is 0.49935 in. Calculate the shear modulus Gal for the aluminum.

Chapter 8, Problem 1RP, The elastic portion of the tension stress-strain diagram for an aluminum alloy is shown in the

Probs. R8-1/2

Expert Solution & Answer
Check Mark
To determine

Find the shear modulus for an aluminum alloy

Answer to Problem 1RP

The shear modulus for an aluminum alloy is 4.31×103ksi_.

Explanation of Solution

Given information:

Gage length is 2 in..

The diameter of the specimen is 0.5 in..

The axial load acts on the specimen is 9 kips..

The new diameter of the specimen is 0.49935 in.

Calculation:

Calculate the modulus of elasticity for aluminum (Eal) using the relation as shown below:

Eal=σε

Here, the stress is σ and the strain is ε.

Refer the stress-strain diagram.

The value of stress is 70 ksi and the value of strain is 0.00614in.in..

Substitute 70 ksi for σ and 0.00614in.in. for ε.

Eal=700.00614=11400.65ksi

The expression to find the cross-sectional area of the specimen (A) is shown below:

A=π4d2

Here, the diameter of the specimen is d.

Substitute 0.5 in. for d.

A=π4(0.5)2=0.19635in2

Find the value of stress when the specimen is loaded with a 9 kip load using the relation:

σ=PA

Here, the load is P.

Substitute 9 kip for P and 0.19635in2 for A.

σ=90.19635=45.84ksi

The expression to find the strain in the longitudinal or axial direction (εlong) using Hook’s law is shown below:

εlong=σE

Here, the Young’s modulus of the aluminum is E.

Substitute 45.84 ksi for σ and 11,400.65 ksi for E.

εlong=45.8411400.65=0.0040208in.in.

Find the strain in lateral direction (εlat) using the relation as shown below:

εlat=d'dd

Here, the new diameter is d' and the initial diameter is d.

Substitute 0.49935 in. for d' and 0.5 in. for d.

εlat=0.499350.50.5=0.0013in.in.

Find the Poisson’s ratio (ν) using the relation as shown below:

ν=εlatεlong

Substitute 0.0013in.in. for εlat and 0.0040208in.in. for εlong.

ν=0.00130.0040208=0.32332

Calculate the modulus of rigidity for the specimen (Gal) using the relation as shown below:

Gal=Eal2(1+ν)

Substitute 11,400.65 ksi for Eal and 0.32332 for ν.

Gal=11400.652(1+0.32332)=4307.594ksi= 4.31×103ksi

Therefore, the shear modulus for an aluminum alloy is 4.31×103ksi_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
R8-1. The elastic portion of the tension stress-strain diagram for an aluminum alloy is shown in the figure. The specimen used for the test has a gauge length of 50 mm and a diameter of 12.5 mm. When the applied load is 40 kN, the new diameter of the specimen is 12.4800 mm. Compute the shear modulus G, for the aluminum. a (MPa) 350 (mm/mm) 0.00480
8-21. The elastic portion of the stress-strain diagram for an aluminum alloy is shown in the figure. The specimen from which it was obtained has an original diameter of 12.7 mm and a gage length of 50.8 mm. When the applied load on the specimen is 50 kN, the diameter is 12.67494 mm. Determine Poisson's ratio for the material. (MPa) 490 (mm/mm) 0.007
The stress-strain diagram for an aluminum alloy specimen having an original diameter of 0.5 in. and a gauge length of 2 in. is given in the figure. If the specimen is loaded until it is stressed to 60 ksi, determine the approximate amount of elastic recovery and the increase in the gage length after it is unloaded.

Chapter 8 Solutions

Statics and Mechanics of Materials (5th Edition)

Ch. 8.4 - The material for the 50-mm-long specimen has the...Ch. 8.4 - If the elongation of wire BC is 0.2 mm after the...Ch. 8.4 - A tension test was performed on a steel specimen...Ch. 8.4 - Data taken from a stressstrain test for a ceramic...Ch. 8.4 - Data taken from a stressstrain test for a ceramic...Ch. 8.4 - Prob. 4PCh. 8.4 - The stress-strain diagram for a steel alloy having...Ch. 8.4 - Prob. 6PCh. 8.4 - The rigid beam is supported by a pin at C and an...Ch. 8.4 - The rigid beam is supported by a pin at C and an...Ch. 8.4 - Prob. 9PCh. 8.4 - The stressstrain diagram for an aluminum alloy...Ch. 8.4 - The stressstrain diagram for an aluminum alloy...Ch. 8.4 - Prob. 12PCh. 8.4 - A bar having a length of 5 in. and cross-sectional...Ch. 8.4 - The rigid pipe is supported by a pin at A and an...Ch. 8.4 - The rigid pipe is supported by a pin at A and an...Ch. 8.4 - Prob. 16PCh. 8.4 - The rigid beam is supported by a pin at C and an...Ch. 8.4 - Prob. 18PCh. 8.4 - Prob. 19PCh. 8.6 - A 100 mm long rod has a diameter of 15 mm. If an...Ch. 8.6 - A solid circular rod that is 600 mm long and 20 mm...Ch. 8.6 - Prob. 15FPCh. 8.6 - Prob. 16FPCh. 8.6 - The acrylic plastic rod is 200 mm long and 15 mm...Ch. 8.6 - The plug has a diameter of 30 mm and fits within a...Ch. 8.6 - The elastic portion of the stress-strain diagram...Ch. 8.6 - The elastic portion of the stress-strain diagram...Ch. 8.6 - The brake pads for a bicycle tire arc made of...Ch. 8.6 - The lap joint is connected together using a 1.25...Ch. 8.6 - The lap joint is connected together using a 1.25...Ch. 8.6 - Prob. 27PCh. 8.6 - The shear stress-strain diagram for an alloy is...Ch. 8.6 - Prob. 29PCh. 8 - The elastic portion of the tension stress-strain...Ch. 8 - Prob. 2RPCh. 8 - Prob. 3RPCh. 8 - Prob. 4RPCh. 8 - Prob. 5RPCh. 8 - Prob. 6RPCh. 8 - The stress-strain diagram for polyethylene, which...Ch. 8 - The pipe with two rigid caps attached to its ends...Ch. 8 - Prob. 9RPCh. 8 - Prob. 10RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY