A time domain reflectometer (TDR) of output impedance 50- sends a step voltage down a 50-2 transmission line that is terminated in an unknown resistive load and displays the voltage at the sending end of the line, Figure Q6a. The line's insulating material has a relative permittivity, &= 2.25. Determine: Q6 (a) (i) the source voltage of the TDR, (ii) the length of the line, and (iii) the load resistance. V(0,t) ↑ 6 V- 3 V- 12 us Figure Q6a (b) The TDR in part (a) is now connected to a metre-long 50 Q transmission line which is terminated in a load of 100 N. Calculate and sketch the voltage at the source for time t= 0 to t = 15 ns, given that the velocity of propagation on the line is 2 x 10 m/s.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
icon
Concept explainers
Question
A time domain reflectometer (TDR) of output impedance 50- sends a step
voltage down a 50-2 transmission line that is terminated in an unknown
resistive load and displays the voltage at the sending end of the line, Figure
Q6a. The line's insulating material has a relative permittivity, &= 2.25.
Determine:
Q6
(a)
(i)
the source voltage of the TDR,
(ii)
the length of the line, and
(iii)
the load resistance.
V(0,t)
6 V-
3 V-
12 us
Figure Q6a
(b)
The TDR in part (a) is now connected to a metre-long 50 Q transmission line
which is terminated in a load of 100 N. Calculate and sketch the voltage at the
source for timet = 0 to t = 15 ns, given that the velocity of propagation on the
line is 2 x 10 m/s.
Transcribed Image Text:A time domain reflectometer (TDR) of output impedance 50- sends a step voltage down a 50-2 transmission line that is terminated in an unknown resistive load and displays the voltage at the sending end of the line, Figure Q6a. The line's insulating material has a relative permittivity, &= 2.25. Determine: Q6 (a) (i) the source voltage of the TDR, (ii) the length of the line, and (iii) the load resistance. V(0,t) 6 V- 3 V- 12 us Figure Q6a (b) The TDR in part (a) is now connected to a metre-long 50 Q transmission line which is terminated in a load of 100 N. Calculate and sketch the voltage at the source for timet = 0 to t = 15 ns, given that the velocity of propagation on the line is 2 x 10 m/s.
Expert Solution
steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Knowledge Booster
Working and Construction of Diode
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,