
Can the normal force on an object ever do work? Explain.

Whether the normal force on an object ever do work.
Answer to Problem 4Q
Solution:The normal force cannot do work on an object.
Explanation of Solution
Introduction: Work done (W) by a net force (→Fnet) is defined as:
W=→Fnet𑨀Δ→x=|→Fnet|.|Δ→x|.cos(θ) (1)
Where:
- |→Fnet| isthe magnitude of the net force →Fnet .
- |Δ→x| is the magnitude of displacement Δ→x of the object.
- θ is the angle between net force →Fnet and displacement Δ→x .
Suppose that anobject on a surface tableis pushed to the right with a force (→F) . Now, the work done (WN) by the normal force (→N)
according to equation (1) is:
WN=|→N||Δ→x|.cos(θ) (2)
But the normal force is perpendicular to displacement (Δ→x) , so:
θ=90° (3)
Substitute (3) into equation (2):
WN=0 (4)
Even if the object moves in the same direction as the normal force, as soon as the object leaves the contact from the surface, normal force becomes zero because normal force is a contact force.
Conclusion:
According to equation (4), the normal force can’t do work on an object.
Chapter 6 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology: An Introduction
Human Anatomy & Physiology (2nd Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- An object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary. bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago Show feedback bookmark_border1.0p3b Is the image real or virtual? Real Virtual Updated 6 days ago Show feedback bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated 7 minutes ago Show feedback bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answerarrow_forwardn object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary. bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago Show feedback bookmark_border1.0p3b Is the image real or virtual? Real Virtual Updated 6 days ago Show feedback bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated just now Show feedback bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answerarrow_forwardCan you draw a FBD and KD please!arrow_forward
- If a 120- volt circuit feeds four 40-watt fluorescent lamps, what current (in amps) is drawn if the power factor is 0.912 0.33 0.68 1.21 3.3arrow_forwardHow do you draw a diagram of the ruler and mass system in equilibrium identifying the anti-clockwise torque and clockwise torque? How do I calculate the anti-clockwise torque and the clockwise torque of the system with the ruler and the washers, does it come from the data in table 2? Please help, thank you!arrow_forwardA long, narrow steel rod of length 2.5000 m at 33.5°C is oscillating as a pendulum about a horizontal axis through one end. If the temperature drops to 0°C, what will be the fractional change in its period?arrow_forward
- How long should a pendulum be in order to swing back and forth in 1.6 s?arrow_forwardLECTURE HANDOUT: REFRACTION OF LIGHT I. Review Each of the diagrams at right shows a ray incident on a boundary between two media. Continue each of the rays into the second medium. Using a dashed line, also draw the path that the wave would have taken if it had continued without "bending." Does the ray representing a wave "bend" toward or away from the normal when: the wave speed is smaller in the second medium? ⚫the wave speed is larger in the second medium? Faster medium Slower medium Slower medium Faster medium II. Qualitative applications of refraction A. Place a coin at the bottom of an empty can or cup. Look into the cup at the coin while your partner slowly moves the can away from you until you no longer see the coin. Now, keep your head steady while your partner gently pours water into the cup. 1. Describe your observations. Switch roles with your partner so that you each have a turn. Shown below are cross-sectional diagrams of the cup for when it was empty and when it was…arrow_forwardProblem Six. A 70 kg student in the figure balances a 1200 kg elephant on a hydraulic lift with diameter 2.0 m that is filled with oil which has a density of 900 kg/m³. How many 80 kg students would have to stand on the first piston in order to raise the elephant by 2.55 m? 80 kg 1200 kg 17.) (A) 5 (D) 8 (B) 6 (E) 9 (C) 7 Oil 2.0 m 5arrow_forward
- In the accompanying figure, the rails, connecting end pieces, and rod all have a resistance per unit length of 4.52/cm. The rod moves to the left at v = 5 m/s. If B = 0.3 T everywhere in the region, what is the current in the circuit (a) when a = 6.5 cm? (b) when a = 4 cm?arrow_forwardProblem Twelve. An object consists of four particles: m₁ =1.0kg, m₂ = 2.0kg, m3 = 3.0kg, ma = 4.0kg. They are connected by rigid massless rods to form a rectangle of edge lengths 2a and 2b, where a 7.0 m and b = 8.0 m. The system rotates about the x-axis through the center as shown. = Find the (x, y) coordinate of the center of gravity of the object (in meters). Use the geometrical center of the object as the origin. 2a 13 2b m M2 Axis of rotation 20.) (A) (-3.2, -1.4) (B) (-3.2, 1.4) (C) (5.2, -1.4) (D) (-1.8,-1.4) (E) (3.2,-5.2) Find the moment of inertia of the object about the x-axis and y-axis that run through the geometrical center of the object. Give an answer as (Ix, ly, I) in units of 10² kg-m². 21.) (A) (6.4, 4.9, 11) (D) (9.8, 11, 12.8) (B) (4.9, 6.4, 11) (C) (11, 12.8, 9.8) (E) (2.5, 10, 11) anul babogaus al bos ano 002 maldor If the object is spinning with angular velocity of 30 rpm around the axis of rotation shown in the diagram, find the rotational kinetic energy. Give…arrow_forwardProblem Eleven. A hollow sphere with rotational inertia 1 = (2/3)MR2 is moving with speed v down an incline of angle 0 toward a spring with spring constant k. After traveling a distance d down the incline with no slipping, the sphere makes contact with the spring and compresses it a distance x before it comes momentarily to rest. Find the distance d in terms of the other quantities given. (21) 19.) (A) d=- 2Mg sin kx²-Mv² +x (B) d= 2Mg sin kx²+Mv² +x kx²-Mv² (C) d=- -x (D) d= 2Mg sin 2Mg cos kx²-Mv² 2Mg sin -x (E) d= kx²-Mv²arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





