An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 3MC
To determine
The largest unit of the heat energy.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A gasoline engine has a power output of 170 kW (about 2.28×105 hp ). Its thermal efficiency is 22.0 %. How much heat must be supplied to the engine per second? Express your answer in joules per second. How much heat is discarded by the engine per second? Express your answer in joules per second.
Air conditioners sold in the United States are given a seasonal energy-efficiency ratio (SEER) rating that consumers can use to compare different models. A SEER rating is the ratio of heat pumped to energy input, similar to a COP but using English units, so a higher SEER rating means a more efficient model. You can determine the COP of an air conditioner by dividing the SEER rating by 3.4.
For inside temperature 24 ∘C and outside temperature 35 ∘C when you'd be using air conditioning, estimate the theoretical maximum SEER rating of an air conditioner. (New air conditioners must have a SEER rating that exceeds 13, quite a bit less than the theoretical maximum, but there are practical issues that reduce efficiency.)
Ex(1): What is the amount of heat energy necessary to raise temperature ( 3 kg )
of Aluminum from ( 15 c °) to ( 25 c °) the specific heat of Aluminum (900 J/kg. c°).
Chapter 5 Solutions
An Introduction to Physical Science
Ch. 5.1 - We talk about temperature, but what does it...Ch. 5.1 - Are there any limits on the lowest and highest...Ch. 5.1 - Show that a temperature of 40 is the same on both...Ch. 5.2 - Prob. 1PQCh. 5.2 - Most substances contract with decreasing...Ch. 5.3 - What is specific about specific heat?Ch. 5.3 - Prob. 2PQCh. 5.3 - Prob. 5.2CECh. 5.3 - How much heat must be removed from 0.20 kg of...Ch. 5.4 - What are the three methods of heat transfer?
Ch. 5.4 - Prob. 2PQCh. 5.5 - Prob. 1PQCh. 5.5 - Prob. 2PQCh. 5.6 - In the ideal gas law, pressure is directly...Ch. 5.6 - Prob. 2PQCh. 5.6 - Prob. 5.4CECh. 5.7 - Prob. 1PQCh. 5.7 - Prob. 2PQCh. 5 - Prob. AMCh. 5 - Prob. BMCh. 5 - Prob. CMCh. 5 - Prob. DMCh. 5 - Prob. EMCh. 5 - Prob. FMCh. 5 - Prob. GMCh. 5 - Prob. HMCh. 5 - Prob. IMCh. 5 - Prob. JMCh. 5 - Prob. KMCh. 5 - Prob. LMCh. 5 - Prob. MMCh. 5 - Prob. NMCh. 5 - Prob. OMCh. 5 - Prob. PMCh. 5 - Prob. QMCh. 5 - Prob. RMCh. 5 - Prob. SMCh. 5 - Prob. TMCh. 5 - Prob. UMCh. 5 - Prob. VMCh. 5 - Prob. WMCh. 5 - Prob. XMCh. 5 - Prob. YMCh. 5 - Prob. 1MCCh. 5 - Which unit of the following is smaller? (5.2) (a)...Ch. 5 - Prob. 3MCCh. 5 - Prob. 4MCCh. 5 - Prob. 5MCCh. 5 - Prob. 6MCCh. 5 - Prob. 7MCCh. 5 - Which of the following has a definite volume but...Ch. 5 - If the average kinetic energy of the molecules in...Ch. 5 - When we use the ideal gas law, the temperature...Ch. 5 - Prob. 11MCCh. 5 - Prob. 12MCCh. 5 - When a bimetallic strip is heated, it bends away...Ch. 5 - Prob. 2FIBCh. 5 - Prob. 3FIBCh. 5 - Prob. 4FIBCh. 5 - Prob. 5FIBCh. 5 - Prob. 6FIBCh. 5 - Prob. 7FIBCh. 5 - The ___ phase of matter has no definite shape, and...Ch. 5 - Prob. 9FIBCh. 5 - In the ideal gas law, pressure is ___ proportional...Ch. 5 - Prob. 11FIBCh. 5 - Prob. 12FIBCh. 5 - When the temperature changes during the day, which...Ch. 5 - Prob. 2SACh. 5 - The two common liquids used in liquid-in-glass...Ch. 5 - An older type of thermostat used in furnace and...Ch. 5 - Heat may be thought of as the middleman of energy....Ch. 5 - When one drinking glass is stuck inside another,...Ch. 5 - Prob. 7SACh. 5 - What does the specific heat of a substance tell...Ch. 5 - When eating a piece of hot apple pie, you may find...Ch. 5 - Prob. 10SACh. 5 - When you exhale outdoors on a cold day, you can...Ch. 5 - Compare the SI units of specific heat and latent...Ch. 5 - Give two examples each of good thermal conductors...Ch. 5 - Prob. 14SACh. 5 - Prob. 15SACh. 5 - Thermal underwear is made to fit loosely. ( Fig....Ch. 5 - What determines the phase of a substance?Ch. 5 - Give descriptions of a solid, a liquid, and a gas...Ch. 5 - Prob. 19SACh. 5 - How does the kinetic theory describe a gas?Ch. 5 - Prob. 21SACh. 5 - Prob. 22SACh. 5 - Prob. 23SACh. 5 - In terms of kinetic theory, explain why a...Ch. 5 - Prob. 25SACh. 5 - Prob. 26SACh. 5 - Prob. 27SACh. 5 - Prob. 28SACh. 5 - What can be said about the total entropy of the...Ch. 5 - Prob. 30SACh. 5 - Prob. 31SACh. 5 - Prob. 1VCCh. 5 - Prob. 1AYKCh. 5 - Prob. 2AYKCh. 5 - Prob. 3AYKCh. 5 - Prob. 4AYKCh. 5 - Prob. 5AYKCh. 5 - Prob. 6AYKCh. 5 - When you freeze ice cubes in a tray, there is a...Ch. 5 - Prob. 8AYKCh. 5 - Prob. 1ECh. 5 - Prob. 2ECh. 5 - Prob. 3ECh. 5 - Prob. 4ECh. 5 - Researchers in the Antarctic measure the...Ch. 5 - Prob. 6ECh. 5 - A college student produces about 100 kcal of heat...Ch. 5 - Prob. 8ECh. 5 - A pound of body fat stores an amount of chemical...Ch. 5 - Prob. 10ECh. 5 - On a brisk walk, a person burns about 325 Cal/h....Ch. 5 - Prob. 12ECh. 5 - How much heat in kcal must be added to 0.50 kg of...Ch. 5 - Prob. 14ECh. 5 - (a) How much energy is necessary to heat 1.0 kg of...Ch. 5 - Equal amounts of heat are added to equal masses of...Ch. 5 - How much heat is necessary to change 500 g of ice...Ch. 5 - A quantity of steam (300 g) at 110C is condensed,...Ch. 5 - Prob. 19ECh. 5 - A fire breaks out and increases the Kelvin...Ch. 5 - A cylinder of gas is at room temperature (20C)....Ch. 5 - A cylinder of gas at room temperature has a...Ch. 5 - A quantity of gas in a piston cylinder has a...Ch. 5 - If the gas in Exercise 23 is initially at room...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How much heat Q, in Joules, is required to warm up 0.5 kg of water from 20 °C to 30 °C ? (Water specific heat is 4,190 J/kg°C) 4186 J O 20,950 J 2000 J O 125,580 J Question 5 Add 100 joules of heat to a system that does 60 joules of work. Determine the change in internal energy. OJ. 100 J.arrow_forward5.14arrow_forwardA heat pump (h=0.3) uses 2500J of work to transfer heat energy. a)how much heat energy is absorbed by the hot reservoir? b) how much heat energy is released by the cold reservoir?arrow_forward
- 1. Suppose a woman does 500 J of work and -9400 J of heat transfer occurs into the environment in the process. (a) What is the decrease in her internal energy, assuming no change in temperature or consumption of food? (That is, there is no other energy transfer.) ΔΕint ✓ J (b) The internal energy is stored energy due to food intake. Treating the change in internal energy as the input energy and work done as output, what is her efficiency? Efficiency, Eff: % (c) What physics law did you use in this problem? Zeroth Law of Thermodynamics First Law of Thermodynamics Second Law of Thermodynamicsarrow_forwardA sphere of surface area 1.25 m² and emissivity 1.0 is at a temperature of 100°C. At what rate does it radiate heat into empty space? (o = 5.67 × 10-8 W/m2.K4) O 3.7 W O 0.71 mW O 1.4 kW O 7.1 W O 9.9 mWarrow_forwardA coffee cup calorimeter contains 48.00 grams of water at 25.0°C. Two additional samples of water are added to the calorimeter as follows: 38.00 grams of water at 53.5°C 52.50 grams of water at 65.5°C Assuming there is no heat absorbed by the calorimeter or lost to the surroundings, calculate the final temperature of the water in °C. The specific heat of water is 4.184 J g‑1°C-1.arrow_forward
- 10. Five people, all about equal masses, are in a perfectly sealed room in which the air conditioner is operating. The air conditioner removes heat at the rate of 500 kcal/h, maintaining a constant temperature. a) What is the average heat output per hour of each person in the room? b) What is the power rating in watts for an electric light bulb that puts out energy at the same rate as one of the individuals?arrow_forward8.8 J of work expands an ideal gas in a metal piston cylinder in a bucket of ice water from 3.7 cubic centimeters to 9.9 cubic centimeters. How much heat was transferred from the ice water to the gas? If you feel this question is incomplete, please explain HOW it is incomplete.arrow_forwardAsap plzzzzzzzzzarrow_forward
- Problem 8.07**. (a) The number of kilocalories in food is determined by calorimetry tech- niques in which the food is burned and the amount of heat transfer is measured. How many kilocalories per gram are there in a 5.00-g peanut if the energy from burning it is transferred to 0.500 kg of water held in a 0.100 kg aluminum cup cÃI = 900 kg, causing a 54.9°C temperature increase? [5.73 Cal/g] (b) Food labels indicate there are 828 Calories in 145 g (about a cup) of peanuts, is this consistent with your answer in the first part? J kg.K'arrow_forwardT2 = 100° C E = 0.8 Tsur = 25° C- q'rad Combustion 9 cond gases q'conv 11 T = 25° C h = 20 W/m2-K k = 1.2 W/m•K EL= 0.15m Air Figure laarrow_forwardA 46-kg woman eats a 522 Calorie (522 kcal) jelly doughnut for breakfast. (a) How many joules of energy are the equivalent of one jelly doughnut? 2192.4 X Your response is off by a multiple of ten. J (b) How many steps must the woman climb on a very tall stairway to change the gravitational potential energy of the woman-Earth system by a value equivalent to the food energy in one jelly doughnut? Assume the height of a single stair is 15 cm. 8.67 X Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. stairs (c) If the human body is only 26% efficient in converting chemical potential energy to mechanical energy, how many steps must the woman climb to work off her breakfast? 9 X Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. stairsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning