Organic Chemistry: Principles and Mechanisms (Second Edition)
Organic Chemistry: Principles and Mechanisms (Second Edition)
2nd Edition
ISBN: 9780393663556
Author: Joel Karty
Publisher: W. W. Norton & Company
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 4.48P
Interpretation Introduction

(a)

Interpretation:

Depending on the number and type of hydrogen nonhydrogen atoms in the given compound and its IHD, the number of hydrogen atoms in each compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Interpretation Introduction

(b)

Interpretation:

Depending on the number and type of hydrogen nonhydrogen atoms in the given compound and its IHD, the number of hydrogen atoms in each compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Interpretation Introduction

(c)

Interpretation:

Depending on the number and type of hydrogen nonhydrogen atoms in the given compound and its IHD, the number of hydrogen atoms in each compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Interpretation Introduction

(d)

Interpretation:

Depending on the number and type of hydrogen nonhydrogen atoms in the given compound and its IHD, the number of hydrogen atoms in each compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Interpretation Introduction

(e)

Interpretation:

Depending on the number and type of hydrogen nonhydrogen atoms in the given compound and its IHD, the number of hydrogen atoms in each compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Interpretation Introduction

(f)

Interpretation:

Depending on the number and type of hydrogen nonhydrogen atoms in the given compound and its IHD, the number of hydrogen atoms in each compound is to be determined.

Concept introduction:

The index of hydrogen deficiency of a molecule is the extent to which the molecule is unsaturated. It is half the number of hydrogen atoms missing from the molecule as compared to a completely saturated molecule. The contribution of each double bond in a molecule to the molecule’s index of hydrogen deficiency is 1. The contribution of each triple bond in a molecule to the molecule’s index of hydrogen deficiency is 2. The contribution of each ring in a molecule to the molecule’s index of hydrogen deficiency is 1. If a molecule is saturated and has no rings, double bonds, and triple bonds, its index of hydrogen deficiency is 0.

Blurred answer
Students have asked these similar questions
2) help with the second question
Name the following organic compounds: CH3 CH,— - CH3- - - CH3 CH compound - CH₂ CH₂ CH₂ CH I CH₂ | CH3 CH₂ - CH₂ | CH,−C–CH,– CH, CH, CH₂ - CH₂ - CH₂ - CH3 CH₂ - CH₂ CH - - CH3 - CH₂ - CH₂ name П 0 0
1.29. Complete these structural formulas by adding enough hydrogens to complete the tetravalence of each carbon. Then write the molecular formula of each compound. (a) C-C=C-C-C (b) C-C-C-C-OH (c) C-C-C-C (d)

Chapter 4 Solutions

Organic Chemistry: Principles and Mechanisms (Second Edition)

Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.1YTCh. 4 - Prob. 4.2YTCh. 4 - Prob. 4.3YTCh. 4 - Prob. 4.4YTCh. 4 - Prob. 4.5YTCh. 4 - Prob. 4.6YTCh. 4 - Prob. 4.7YTCh. 4 - Prob. 4.8YTCh. 4 - Prob. 4.9YTCh. 4 - Prob. 4.10YTCh. 4 - Prob. 4.11YTCh. 4 - Prob. 4.12YTCh. 4 - Prob. 4.13YTCh. 4 - Prob. 4.14YTCh. 4 - Prob. 4.15YTCh. 4 - Prob. 4.16YTCh. 4 - Prob. 4.17YTCh. 4 - Prob. 4.18YTCh. 4 - Prob. 4.19YTCh. 4 - Prob. 4.20YTCh. 4 - Prob. 4.21YTCh. 4 - Prob. 4.22YTCh. 4 - Prob. 4.23YTCh. 4 - Prob. 4.24YTCh. 4 - Prob. 4.25YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
ENVIRONMENTAL POLLUTION; Author: 7activestudio;https://www.youtube.com/watch?v=oxtMFmDTv3Q;License: Standard YouTube License, CC-BY