Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 24Q
To determine
The comet’s average distance from the Sun and the farthest it can get from the Sun.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A satellite orbits a planet in a circular orbit at an altitude (distance above the
surface) of 1000km. The radius of the planet is 8000 km. The mass of the planet
is 8 x 10^24 kg. What is the orbital speed?
Your answer
The gravitational force between a planet and its moon is óx10^16 N. For another
moon orbiting the same planet with twice the orbital radius and 3 times the
5.
The Magellan orbiter orbits Venus with a period of 3.26 hours. How far (in km) above the surface of the planet is it? (The mass of Venus is 4.87 ✕ 1024 kg, and the radius of Venus is 6.05 ✕ 103 km.)
The Magellan orbiter orbits Venus with a period of 3.26 hours. How far (in km) above the surface of the planet is it? (The mass of Venus is 4.87 ✕ 1024 kg, and the radius of Venus is 6.05 ✕ 103 km.)
Chapter 4 Solutions
Universe: Stars And Galaxies
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - Prob. 23QCh. 4 - Prob. 24QCh. 4 - Prob. 25QCh. 4 - Prob. 26QCh. 4 - Prob. 27QCh. 4 - Prob. 28QCh. 4 - Prob. 29QCh. 4 - Prob. 30QCh. 4 - Prob. 31QCh. 4 - Prob. 32QCh. 4 - Prob. 33QCh. 4 - Prob. 34QCh. 4 - Prob. 35QCh. 4 - Prob. 36QCh. 4 - Prob. 37QCh. 4 - Prob. 38QCh. 4 - Prob. 39QCh. 4 - Prob. 40QCh. 4 - Prob. 41QCh. 4 - Prob. 42QCh. 4 - Prob. 43QCh. 4 - Prob. 44QCh. 4 - Prob. 45QCh. 4 - Prob. 46QCh. 4 - Prob. 47QCh. 4 - Prob. 48QCh. 4 - Prob. 49QCh. 4 - Prob. 50QCh. 4 - Prob. 51QCh. 4 - Prob. 52QCh. 4 - Prob. 53QCh. 4 - Prob. 54QCh. 4 - Prob. 55QCh. 4 - Prob. 56QCh. 4 - Prob. 57QCh. 4 - Prob. 58Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Comet Halley (Fig. P11.21) approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. (AU is the symbol for astronomical unit, where 1 AU = 1.50 1011 m is the mean EarthSun distance.) How far from the Sun will Halleys comet travel before it starts its return journey?arrow_forwardWhat is the orbital period of a satellite orbiting just above the surface of the asteroid in Problem 11?arrow_forward(a) One of the moons of Jupiter, named Io, has an orbital radius of 4.22 108 m and a period of 1.77 days. Assuming the orbit is circular, calculate the mass of Jupiter, (b) The largest moon of Jupiter, named Ganymede, has an orbital radius of 1.07 109 m and a period of 7.16 days. Calculate the mass of Jupiter from this data, (c) Are your results to parts (a) and (b) consistent? Explain.arrow_forward
- Which major planet has the largest . . . A. semimajor axis? B. average orbital speed around the Sun? C. orbital period around the Sun? D. eccentricity?arrow_forwardModel the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardAccording to Lunar Laser Ranging experiment the average distance LM from the Earth to the Moon is approximately 3.92 x 105 km. The Moon orbits the Earth and completes one revolution relative to the stars in approximately 27.5 days (a sidereal month). Calculate the orbital velocity of the Moon in m/s. Answer: Choose...arrow_forward
- Like all planets, the planet Venus orbits the Sun in periodic motion and simultaneously spins about its axis. Just as on Earth, the time to make one complete orbit (i.e., the period of orbit) is what defines a year. And the time to make one complete revolution about its axis (i.e., the period of rotation) is what defines a day. The period of orbit for the Earth is 365.25 days and the period of rotation is 24 hours (1.00 day). But when these same values for Venus are expressed relative to Earth, it is found that Venus has a period of orbit of 225 days and a period of rotation of 243 days. So for Venus inhabitants, a day would last longer than a year! Determine the frequency of orbit and the frequency of rotation (in Hertz) on Venus.arrow_forwardThe moon Phobos orbits around Mars with a semi-major axis of 9376 km, and an orbital period of 7.65 hours. If NASA wanted to put a satellite in a circular orbit around Mars with an orbital period of 50.0 hours, what should the radius of the orbit be, in km?arrow_forwardAccording to Lunar Laser Ranging experiment the average distance LM from the Earth to the Moon is approximately 3.82 x 105 km. The Moon orbits the Earth and completes one revolution relative to the stars in approximately 27.5 days (a sidereal month). Calculate the orbital velocity of the Moon in m/s.arrow_forward
- The Moon has a period of 27.3 days and a mean distance of 3.9x105 km from its center to the center of Earth. a)Use Kepler's laws to find the period of a satellite in orbit 6.70x 10 km from the center of Earth. b) How far above Earth's surface is this satellite?arrow_forwardThe semimajor axis of Mars orbit is about 1.52 astronomical units (au), where an au is the Earth's average distance from the Sun, meaning the semimajor axis of Earth's orbit is 1 au. To go from Earth to Mars and use the least energy from rocket fuel, the orbit has a semimajor axis of 1.26 au and an eccentricity of about 0.21. Starting at Earth's orbit, to follow this path we give the spacecraft an orbital velocity of 40 km/s. Which of the following describes this best? a. It arrives at Mars orbit at the same moment that Mars is there, and must speed up to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. b. It arrives at Mars orbit at the same moment that Mars is there, and must slow down to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. c. It flys past Mars on its trajectory unless it is braked by accelerating toward the Sun. It which leaves Earth when Mars is nearly…arrow_forwardThe semimajor axis of Mars orbit is about 1.52 astronomical units (au), where an au is the Earth's average distance from the Sun, meaning the semimajor axis of Earth's orbit is 1 au. To go from Earth to Mars and use the least energy from rocket fuel, the orbit has a semimajor axis of 1.26 au and an eccentricity of about 0.21. Starting at Earth's orbit, to follow this path we give the spacecraft an orbital velocity of 40 km/s. Which of the following describes this best? It arrives at Mars orbit at the same moment that Mars is there, and must speed up to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. It arrives at Mars orbit at the same moment that Mars is there, and must slow down to go into an orbit next to Mars or else drop back into perihelion (closest to the Sun) at Earth's orbit. It flys past Mars on its trajectory unless it is braked by accelerating toward the Sun. It which leaves Earth when…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY