Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 13Q
To determine
If Mercury takes more time to go from eastern to western elongation or vice-versa.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spacecraft leaving Earth is deployed at burnout from its launch vehicle at
400 km altitude with flight path angle -10.0 degrees and speed 10.8 km/sec.
; Using Kepler's equation, determine how long it will take the
spacecraft to cross lunar orbit (assume the Moon is on a circular orbit about
Earth with 384,000 km radius, and ignore the lunar gravitational effects).
Confirm your answer to part (a) using the appropriate Lambert TOF
a.
b.
equation.
If burnout speed is increased to 13 km/sec (still with flight path angle
с.
at -10.0 degrees and altitude 400 km), how much time can be saved for the
trip to the Moon?
The Mars Robotic Lander for which we are making these calculations is designed to return samples of rock from Mars after a long time of collecting samples, exploring the area around the landing site, and making chemical analyses of rocks and dust in the landing area. One synodic period is required for Earth to be in the same place relative to mars as when it landed.
Calculate the synodic period (in years) using the following formula:
1/Psyn = (1/PEarth) - (1/PMars)
where PEarth is the sidereal period of the Earth (1 year) and PMars is the sidereal period of Mars.
If 3/4 of a Martian year was spent collecting samples and exploring the terrain around the landing site, calculate how long the Mars Robotic Lander expedition took!
Tutorial
Based on the orbital properties of Uranus, how far across the sky in arc seconds does it travel in one Earth
day? The average orbital radius is 2.88 x 109 km and the period is 84.0 years. (Assume Uranus and the Earth
are at the closest point to one another in their orbits.)
How many full Moons does this distance cover if the Moon has an angular diameter of 0.5 degrees?
Part 1 of 4
We first need to determine how fast the planet is moving across the sky. If we know the period and the
distance between the Sun and the planet we can calculate the velocity using:
2ar
which will tell us how many kilometers the planet travels in a day if we convert the period into days.
days
= (P
years'
|days/year
Pdays
days
Submit
Skip (you cannot come back)
Chapter 4 Solutions
Universe: Stars And Galaxies
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 17QCh. 4 - Prob. 18QCh. 4 - Prob. 19QCh. 4 - Prob. 20QCh. 4 - Prob. 21QCh. 4 - Prob. 22QCh. 4 - Prob. 23QCh. 4 - Prob. 24QCh. 4 - Prob. 25QCh. 4 - Prob. 26QCh. 4 - Prob. 27QCh. 4 - Prob. 28QCh. 4 - Prob. 29QCh. 4 - Prob. 30QCh. 4 - Prob. 31QCh. 4 - Prob. 32QCh. 4 - Prob. 33QCh. 4 - Prob. 34QCh. 4 - Prob. 35QCh. 4 - Prob. 36QCh. 4 - Prob. 37QCh. 4 - Prob. 38QCh. 4 - Prob. 39QCh. 4 - Prob. 40QCh. 4 - Prob. 41QCh. 4 - Prob. 42QCh. 4 - Prob. 43QCh. 4 - Prob. 44QCh. 4 - Prob. 45QCh. 4 - Prob. 46QCh. 4 - Prob. 47QCh. 4 - Prob. 48QCh. 4 - Prob. 49QCh. 4 - Prob. 50QCh. 4 - Prob. 51QCh. 4 - Prob. 52QCh. 4 - Prob. 53QCh. 4 - Prob. 54QCh. 4 - Prob. 55QCh. 4 - Prob. 56QCh. 4 - Prob. 57QCh. 4 - Prob. 58Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many precession periods are in one cycle of Earths axis inclination variation? In one cycle of Earths orbit eccentricity variation? In the time span shown in Figure 2-11b, how many periods or fractions of periods did the Earths axis precess, nod, and Earths orbit change shape? Of the three periods, which is likely to have the most effect on the changes shown in Figure 211?arrow_forwardure This image is taken from the course content (Lessons or Readings). Select the words from the drop-down controls which best describe the image. Eris Pluto Neptune Saturn Uranus Jupiter Mars Earth Sun Venus The image shows the sun, the planets, and the • The objects are Mercury • largest known +arrow_forwardMars is 1.5 times as far away from the Sun as Earth. Earth’s axis is tilted at 23.5o compared to the ecliptic. The axis of Mars is tilted at 25o compared to the ecliptic. The atmosphere on Earth is 100 times as thick as the atmosphere on Mars. Which of the following statements is true? 1.)Mars is so cold that the water there is ice, while Earth does not have any ice 2.)When it is summer in Earth’s northern hemisphere, it is winter on Mars’ southern hemisphere 3.) Earth has seasons, Mars does not 4.) All of the water on Mars is frozen, while Earth has water in solid, liquid and gas formarrow_forward
- Find the speed of the first meteoroid when it strikes Earth. Express your answer in kilometers per second. femplates Symbols uado redo reset keyboard shortcuts help, vị = km/s Submit Request Answer Part B Find the speed of the second meteoroid at its closest approach to Earth. Express your answer in kilometers per second. Templates Symbols undo redo reset keyboard shortcuts help. v2 = km/s Submit Request Answer Part C Will the second meteoroid ever return to Earth's vicinity? o yes o no Submit Request Answerarrow_forwardWe need to create a scale model of the solar system (by shrinking the sun down to the size of a basketball or ~30cm). First, we will need to scale down actual solar system dimensions (planet diameters and average orbital radiuses) by converting our units. There are two blank spaces in the table below. We will effectively fill in the missing data in the next set of questions. Use the example below to help you. Example: What is the scaled diameter of Mercury if the Sun is scaled to the size of a basketball (30 cm)? The actual diameter of Mercury is 4879 km The Sun's diameter is 1392000 km If the Sun is to be reduced to the size of a basketball, then the conversion we need for this equation will be: 30cm1392000km Here is how we run the conversion: 4879km×30cm1392000km=0.105cm or 0.11cm if we were to round our answer. This means that if the sun in our model is the size of a basketball, Mercury is the size of a grain of sand. We can also see by looking at the table, that we would…arrow_forwardPhysics written by hand.arrow_forward
- What is the angular diameter of Saturn (in arc seconds) as seen from Earth when the two planets are farthest apart?arrow_forwardUsing Appendix G, complete the following table that describes the characteristics of the Galilean moons of Jupiter, starting from Jupiter and moving outward in distance. Table A This system has often been described as a mini solar system. Why might this be so? If Jupiter were to represent the Sun and the Galilean moons represented planets, which moons could be considered more terrestrial in nature and which ones more like gas/ice giants? Why? (Hint: Use the values in your table to help explain your categorization.)arrow_forwardDuring a retrograde loop of Mars, would you expect Mars to be brighter than usual in the sky, about average in brightness, or fainter than usual in the sky? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY